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Accessible quantification of multiparticle entanglement
Marco Cianciaruso1,2, Thomas R Bromley1,2 and Gerardo Adesso1

Entanglement is a key ingredient for quantum technologies and a fundamental signature of quantumness in a broad range of
phenomena encompassing many-body physics, thermodynamics, cosmology and life sciences. For arbitrary multiparticle systems,
entanglement quantification typically involves nontrivial optimisation problems, and it may require demanding tomographical
techniques. Here, we develop an experimentally feasible approach to the evaluation of geometric measures of multiparticle
entanglement. Our framework provides analytical results for particular classes of mixed states of N qubits, and computable lower
bounds to global, partial, or genuine multiparticle entanglement of any general state. For global and partial entanglement, useful
bounds are obtained with minimum effort, requiring local measurements in just three settings for any N. For genuine
entanglement, a number of measurements scaling linearly with N are required. We demonstrate the power of our approach to
estimate and quantify different types of multiparticle entanglement in a variety of N-qubit states useful for quantum information
processing and recently engineered in laboratories with quantum optics and trapped ion setups.
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INTRODUCTION
The fascination with quantum entanglement has evolved over the
last eight decades, from the realm of philosophical debate1 to a
very concrete recognition of its resource role in a range of applied
sciences.2,3 Although considerable progress has been achieved in
the detection of entanglement,4–12 its experimentally accessible
quantification remains an open problem for any real implementa-
tion of an entangled system.13–23 Quantifying entanglement is yet
necessary to gauge precisely the quantum enhancement in
information processing and computation,2,3,24 and to pin down
exactly how much a physical or biological system under
observation departs from an essentially classical behaviour.25 This
is especially relevant in the case of complex, multiparticle systems,
for which only quite recently have notable advances been
reported on the control of entanglement.26–29

An intuitive framework for quantifying the degree of multi-
particle entanglement relies on a geometric perspective.30–32

Within this approach, one first identifies a hierarchy of non-
entangled multiparticle states, also referred to as M-separable
states for 2⩽M⩽N, where N is the number of particles composing
the quantum system of interest; see Figure 1. Introducing then a
distance functional D with respect to the natural properties of
contractivity under quantum operations and joint convexity
(see Materials and Methods),33 the quantity EDM defined as

EDM ρð Þ ¼ inf
ς M� separable

D ρ; ςð Þ; ð1Þ

is a valid geometric measure of (M-inseparable) multiparticle
entanglement in the state ρ.
Some special cases are prominent in this hierarchy. For M=N,

the distance from N-separable (also known as fully separable)
states defines the global multiparticle entanglement EDN ,
which accounts for any form of entanglement distributed among

two or more of the N particles. Geometric measures of global
entanglement have been successfully employed to characterise
quantum phase transitions in many-body systems34 and directly
assess the usefulness of initial states for Grover’s search
algorithms.35 On the other extreme of the hierarchy, for M= 2,
the distance from two-separable (also known as biseparable)
states defines instead the genuine multiparticle entanglement ED2 ,
which quantifies the entanglement shared by all the N particles,
that is the highest degree of inseparability. Genuine multiparticle
entanglement is an essential ingredient for quantum technologies
including multiuser quantum cryptography,36 quantum metrology37

and measurement-based quantum computation.38 Finally, for any
intermediate M, we can refer to EDM as partial multiparticle
entanglement. The presence of partial entanglement is relevant in
quantum informational tasks such as quantum secret sharing10

and may have a relevant role in biological phenomena.25,39

Probing and quantifying different types of entanglement can shed
light on which nonclassical features of a mixed multiparticle state
are necessary for quantum-enhanced performance in specific
tasks7 and can guide the understanding of the emergence of
classicality in multiparticle quantum systems of increasing
complexity.40

The quantitative amount of multiparticle entanglement, be it
global or genuine (or any intermediate type), has an intuitive
operational meaning when adopting the geometric approach.
Namely, EDM measures how distinguishable a given state ρ is from
the closest M-separable state. Given some widely adopted metrics,
such a distinguishability is directly connected to the usefulness of
ρ for quantum information protocols relying on multiparticle
entanglement. For instance, the trace distance of entanglement is
operationally related to the minimum probability of error in the
discrimination between ρ and any M-separable state with a single
measurement.33 Furthermore, the geometric entanglement with
respect to relative entropy or Bures distance sets quantitative
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bounds on the number of orthogonal states that can be
discriminated by local operations and classical communication
(LOCC).41 The geometric entanglement based on infidelity31

(monotonically related to Bures distance) has also a dual
interpretation based on the convex roof construction;42 that is, it
quantifies the minimum price (in units of pure-state entangle-
ment) that has to be spent on average to create a given density
matrix ρ as a statistical mixture of pure states.
It is therefore clear that finding the minimum in Equation (1),

and hence evaluating geometric measures of multiparticle
entanglement defined by meaningful distances, is a central
challenge to benchmark quantum technologies. However, obtain-
ing such a solution for general multiparticle states is in principle a
formidable problem. Even if possible, there would remain major
challenges for experimental evaluation, which would in general
require a complete reconstruction of the state through full
tomography. For multiparticle states of any reasonable number of
qubits, full state tomography places significant demands on
experimental resources, and it is thus highly desirable to provide
quantitative guarantees on the geometric multiparticle entangle-
ment present in a state, via nontrivial lower bounds, in an
experimentally accessible way.13–23

Here we provide substantial advances towards addressing this
problem in a general fashion. We identify a general framework for
the provision of experimentally friendly quantitative guarantees
on the geometric multiparticle entanglement present in a state.
This approach consists of:

(1) Choosing a set of reference states: find a restricted family of
N-qubit states with the property that any state may be
mapped into this family through a fixed procedure of single-
qubit LOCC. This reference family should be simple to

characterise, and can be chosen from experimental or
theoretical considerations.

(2) Identifying M-separable reference states: Apply the fixed LOCC
procedure to the general set of M-separable states, hence
identifying the subset of M-separable states within the
reference family.

(3) Calculating EDM for the reference states: solve the optimisation
problem for the geometric entanglement of reference states.
This is markedly simplified by using the properties of
contractivity and joint convexity, that hold for any distance
functional D defining a valid entanglement measure, and
imply in particular that one of the closest M-separable states to
any reference state is to be found itself within the reference
family.

(4) Deriving optimised lower bounds for any state: exploit the
freedom to apply single-qubit unitaries to any N-qubit state
ρ in order to find the corresponding reference state with the
highest geometric entanglement, providing an optimised
lower bound to EDM ρð Þ.

This process presents a versatile and comprehensive approach
to obtain lower bounds on geometric multiparticle entanglement
measures according to any valid distance. While building on some
previously utilised methods for steps (1)13–16 and (4)13,15,16 it
introduces novel techniques in steps (2) and most importantly (3),
which are crucial for completing the framework and making it
effective in practice (see e.g., Appendix C, D, E and F of the
Supplementary Material).
To illustrate the power of our approach, we focus initially on a

reference family of mixed states ϖ of N qubits, that we label M3
N

states, which form a subset of the class of states having all
maximally mixed marginals. This family includes maximally
entangled Bell states of two qubits and their mixtures, as well as
multiparticle bound entangled states.43–46 For any N, these states
are completely specified by three easily measurable quantities,
given by the correlation functions cj ¼ 〈σ�N

j 〉, where {σj}j= 1,2,3

are the Pauli matrices. In the following we show how every
entanglement monotone EDM can be evaluated exactly for any
even N on these states, by revealing an intuitive geometric picture
common to all valid distances D. For odd N, the results are
distance-dependent; we show nonetheless that EDM can still be
evaluated exactly if D denotes the trace distance. The results are
nontrivial for all M4 N=2d e in the hierarchy of Figure 1. A central
observation, in line with the general framework, is that an arbitrary
state of N qubits can be transformed into anM3

N state by an LOCC
procedure, which cannot increase entanglement by definition.
This implies that our exact formulae readily provide practical lower
bounds to the degree of global and partial multiparticle
entanglement in completely general states. Importantly, the
bounds are obtained by measuring only the three correlation
functions {cj} for any number of qubits, and can be further
improved by adjusting the local measurement basis (see Figure 2
for an illustration).
Furthermore, we discuss how our results can be extended to

allow for the quantitative estimation of genuine multiparticle
entanglement as well, at the cost of performing extra
measurements. As M3

N states are always biseparable, we must
consider a different reference family. We focus on the class of
N-qubit states obtained as mixtures of Greenberger–Horne–
Zeilinger (GHZ) states,5,47 the latter being central resources for
quantum communication and estimation; this class of states
depends on 2N− 1 real parameters. We calculate exactly distance-
based measures of genuine multiparticle entanglement ED2 for
these states, for every valid D. Once more, these analytical results
provide lower bounds to geometric measures of genuine
entanglement for any general state of N qubits, obtainable
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Figure 1. Geometric picture of multiparticle entanglement in a
quantum system of N particles. Each red-shaded convex set contains
M-separable states (for 2⩽M⩽N), which can be defined as follows.
The set of pure M-separable states is given by the union of the sets
of tensor products ΨMj i ¼ �M

k¼1 ψ kð Þ�� �
of pure states ψ kð Þ�� �

, with
respect to any partition of the N particles into M subsystems k= 1,…,
M; the set of general (mixed)M-separable states is then formed by all
convex mixtures of pure M-separable states, where each term in the
mixture may be factorised with respect to a different multipartition.
This provides a partition-independent classification of separability
(see also the Supplementary Material). For any M, the multiparticle
entanglement measure EDM of a state ρ is defined as the minimum
distance, with respect to a contractive and jointly convex distance
functional D, from the set of M-separable states. We refer to the case
M=N (dotted line) as global entanglement, the case M= 2 (solid
line) as genuine entanglement and any intermediate case (dashed
line) as partial entanglement, as detailed in the main text.

Accessible quantification of multiparticle entanglement
M Cianciaruso et al

2

npj Quantum Information (2016) 16030 Published in partnership with The University of New South Wales



experimentally in this case by performing at least N+1 local
measurements.48

We demonstrate that our results provide overall accessible
quantitative assessments of global, partial and genuine multi-
particle entanglement in a variety of noisy states produced in
recent experiments,40,44,49–52 going beyond mere detection,4–12

yet with a significantly reduced experimental overhead. Compared
with some recent complementary approaches to the quantifica-
tion of multiparticle entanglement,13–23 we find that our results,
obtained via the general quantitative framework discussed above,
fare surprisingly well in their efficiency and versatility despite the

minimal experimental requirements (see Table 1 for an in-depth
comparison).

RESULTS
Global and partial multiparticle entanglement
We begin by choosing as our reference family the set of N-qubit

M3
N states. An M3

N state is defined as ϖ ¼ 1
2N

I�N þP3
j¼1 cjσ

�N
j

� �
,

where I is the 2 × 2 identity matrix. These states are invariant
under permutations of any pair of qubits and enjoy a nice

Figure 2. Experimentally friendly protocol to quantify global and partial N-particle entanglement. Top row: (a) A state ρ of N qubits is shared by
N parties, named Alice, Bob, Charlie, ..., Natalie. Each party, labelled by α=A,…, N, locally measures her or his qubit in three orthogonal
directions f~σ αð Þ

j g, with j= 1, 2, 3, indicated by the solid arrows. If the shared state ρ is completely unknown, a standard choice can be to
measure the three canonical Pauli operators for all the qubits (corresponding to the directions of the dashed axes); if instead some partial
information on ρ is available, the measurement directions can be optimised a priori. Once all the data are collected, the N parties communicate
classically to construct the three correlation functions ~cj

� �
, with ~cj ¼〈�α~σ

αð Þ
j 〉. Middle row: for any N, one can define a reference subset of

N-qubit states with all maximally mixed marginals (M3
N states), which are completely specified by a triple of orthogonal correlation functions

{cj}. These states enjoy a convenient representation in the space of {c1, c2, c3}. (b) For even N, M3
N states fill the tetrahedron with vertices

{1, (−1)N/2, 1}, {− 1, − (−1)N/2, 1}, {1, − (−1)N/2, − 1} and {− 1, (−1)N/2, − 1}. (c) For odd N, they are instead contained in the unit Bloch ball. For any
M4 N=2d e, M-separable M3

N states are confined to the octahedron with vertices {± 1, 0, 0}, {0, ± 1, 0} and {0, 0, ± 1}, illustrated in red in both
panels; conversely, for M≤ N=2d e, all M3

N states are M-separable. Bottom row: geometric analysis of multiparticle entanglement. The bottom
panels depict zooms of (d) a corner of the tetrahedron for even N and (e) a sector of the unit sphere for odd N, opposing a face of the
octahedron of M-separable M3

N states (for M4 N=2d e). Instances of inseparable M3
N states are indicated by blue circles, and their closest

M-separable states by red crosses. The cyan surfaces in each of the two bottom panels contain states with equal global and partial
multiparticle entanglement EDM, which we compute exactly. The results are valid for any contractive and jointly convex distance D in the even N
case, and for the trace distance in the odd N case. The entanglement of an M3

N state with correlation functions ~c1; ~c2; ~c3f g provides an
analytical lower bound for the entanglement of any N-qubit state with the same correlation functions, such as the state ρ initially shared by
the N parties in a. The bound is effective for the most relevant families of N-qubit states in theoretical and experimental investigations of
quantum information processing, as we show in this article.
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geometrical representation in the space of the three correlation
functions cj, corresponding to a tetrahedron for even N and to the
unit ball for odd N, as depicted in Figure 2. We can then
characterise the subset of M-separable M3

N states for any N. We
find that, if M4 N=2d e, then the M-separable M3

N states fill a
subset corresponding to an octahedron in the space of the
correlation functions (Figure 2). When M⩽ N=2d e, all M3

N states
are instead M-separable. The proofs are deferred to the
Supplementary Material.
We can now tackle the quantification of global and partial

multiparticle entanglement in these states; for the latter, we will
always focus on the nontrivial case M4 N=2d e throughout this
section. First, we observe that the closest M-separable state ςϖ to
an M3

N state ϖ, which solves the optimisation in Equation (1), can
always be found within the subset of M-separable M3

N states,
yielding a considerable simplification of the general problem. To
find the exact form of ςϖ, and consequently of EDM ϖð Þ, we
approach the cases of even and odd N separately.
For even N, we prove that there exists a unique solution to the

minimisation in Equation (1), independent of the specific choice of
contractive and jointly convex distance D. Namely, the closest
M-separable state ςϖ is on the face of the octahedron bounding
the corner of the tetrahedron in which ϖ is located, and is
identified by the intersection of such octahedron face with the line
connecting ϖ to the vertex of the tetrahedron corner, as depicted
in Figure 2d. It follows that, for any nontrivial M, valid D and even

N, the multiparticle entanglement EDMðϖfcjgÞ of an M3
N state ϖ cjf g

with correlation functions {cj} is only a monotonically increasing
function of the Euclidean distance between the point of
coordinates {cj} and the closest octahedron face, which is in turn

proportional to hϖ ¼ 1
2

P3
j¼1 cj
�� �� - 1� �

(notice that hϖ equals the

bipartite measure known as concurrence for N= 2 (refs 24,53)).
We have then a closed formula for any valid geometric measure of

global and partial multiparticle entanglement on an arbitrary M3
N

state ϖ cjf g with even N, given by

EDM ϖ cjf g� �
¼ 0; hϖ�0 or M�N=2ð Þ;

f D hϖð Þ; otherwise;

�
ð2Þ

where fD denotes a monotonically increasing function whose
explicit form is specific to each distance D. In Table 2, we present
the expression of fD for relevant distances in quantum information
theory.
For odd N, the closest M-separable state ςϖ to any M3

N state ϖ
is still independent of (any nontrivial) M. However, different
choices of D in Equation (1) are minimised by different states ςϖ.
We focus on the important but notoriously hard-to-evaluate case
of the trace distance DTr(ϖ, ς) (Table 2). In the representation of
Figure 2c, the trace distance amounts to half the Euclidean
distance on the unit ball. It follows that the closest M-separable
state ςϖ to ϖ is the Euclidean orthogonal projection onto the
boundary of the octahedron, see Figure 2e. We can then get a
closed formula for the trace distance measure of global and partial
multiparticle entanglement EDTr

M ðϖfcjgÞ of an arbitrary M3
N state

ϖfcjg with odd N as well, given by

EDTr
M ϖ cjf g� �

¼
0; hϖ�0 or M� N=2d eð Þ;
hϖffiffi
3

p ; 0<hϖ�3 cj
�� ��=2 8j;

min
j

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cj
�� ��2 þ 1

2 2hϖ - cj
�� ��
 �2q

; otherwise:

8>><
>>:

ð3Þ
The usefulness of the just-derived analytical results for multi-
particle entanglement is not limited to the M3

N states. In
accordance with our general framework, a crucial observation is
that the M3

N states are extremal among all quantum states with
given correlation functions {cj}. Specifically, any general state ρ of
N qubits can be transformed into an M3

N state with the same {cj}

Table 1. A comparison of relevant literature on experimentally friendly quantification of multiparticle entanglement (based on accessible lower
bounds)

Reference Experimental friendliness Computational friendliness M-inseparability quantified Entanglement measure

22,23 Variable Optimisation required 2⩽M⩽N Any convex and continuous measure
21 O(2N) Optimisation required 2 Genuine multiparticle concurrence
19,20 O(N) Closed formula 2 Robustness of entanglement
18 O(N) Closed formula 2 Genuine multiparticle concurrence
17 O(N) Closed formula 2 Genuine multiparticle concurrence
15,16 O(N) Closed formula 2 Polynomial invariant (three-tangle)
14 O(N) Closed formula 2 Genuine multiparticle negativity
13 O(N) Closed formula 2⩽M⩽N Infidelity-based geometric measure
[*] (GHZ-diagonal set) O(N) Closed formula 2 All distance-based measures
[*] (M3

N set) 3 Closed formula N=2d eoM⩽N All distance-based measures

For each reference, we give the experimental friendliness, in terms of the number of local measurement settings required, and also the computational
friendliness. The levels of M-inseparability quantified are given, along with the entanglement measures to which each work applies; [*] refers to this paper.

Table 2. Analytical expression of global and partial multiparticle entanglement EDM for M3
N states of an even number N of qubits as defined by

Equation (2), for representative choices of the distance D

Distance D D(ρ, ς) fD(hϖ)

Relative entropy DRE Tr ρ log 2ρ - log 2ςð Þ½ � 1
2 1 - hϖð Þlog 2 1 - hϖð Þ þ 1þ hϖð Þlog 2 1þ hϖð Þ½ �

Trace DTr
1
2Tr ρ - ςj j 1

2hϖ

Infidelity DF 1- Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ς

p
ρ
ffiffiffi
ς

pp
 �� 2 1
2 1 -

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 - h2ϖ

q� �
Squared Bures DB 2 1 - Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ς

p
ρ
ffiffiffi
ς

pp
 �� 
2 -

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 - hϖ

p
-
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hϖ

p

Squared Hellinger DH 2 1 - Tr
ffiffiffi
ρ

p ffiffiffi
ς

p
 �� 
2 -

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 - hϖ

p
-
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hϖ

p
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Table 3. Applications of our framework to construct accessible lower bounds on global and partial (M-inseparable) multiparticle entanglement
(which are nonzero for any M4 N=2d e when

P
j ~cj
�� �� > 1), for the families of N-qubit states listed as follows

N State ~c1; ~c2; ~c3f g P3
j¼1 ~cj
�� �� {θ, ψ, ϕ}

N= 3 GHZ 3ð Þ�� �
-

ffiffiffiffi
8
27

q
;
ffiffiffiffi
8
27

q
; -

ffiffiffiffi
8
27

qn o
2
ffiffi
2
3

q
cos - 1 1ffiffi

3
p
� �

; 5π30;
π
4

n o
W 3ð Þ�� �

1ffiffi
3

p ; - 1ffiffi
3

p ; 1ffiffi
3

p
n o ffiffiffi

3
p

cos - 1 1ffiffi
3

p
� �

; 0; π4

n o
N=4 GHZ 4ð Þ�� �

{1,1,1} 3 {0,0,0}

W 4ð Þ�� �
5
9;

5
9;

5
9

� �
5
3 cos - 1 1ffiffi

3
p
� �

; 0; π4

n o
ρ

4ð Þ
Wei xð Þ {x, x, 2x− 1} 2x þ 2x - 1j j {0,0,0}

C 4ð Þ
1

��� E
{1,1,1} 3 *

C 4ð Þ
2

��� E
{1,1,1} 3 π

4; 0; 0
� �

D 4ð Þ
2

��� E
{1,1,1} 3 {0,0,0}

Ψ 4ð Þ�� �
{1,1,1} 3 {0,0,0}

ρ
4ð Þ
S {1,1,1} 3 {0,0,0}

N=5 GHZ 5ð Þ�� �
1ffiffi
2

p ; 1ffiffi
2

p ; 0
n o ffiffiffi

2
p

0; π
40;

π
40

� �
W 5ð Þ�� �

7
9
ffiffi
3

p ; - 7
9
ffiffi
3

p ; 7
9
ffiffi
3

p
n o

7
3
ffiffi
3

p cos - 1 1ffiffi
3

p
� �

; 0; π4

n o
ρ

5ð Þ
Wei xð Þ xffiffi

2
p ; xffiffi

2
p ; 0

n o ffiffiffi
2

p
x 0; π

40;
π
40

� �
C 5ð Þ
1

��� E
1
2;

1
2;

1
2

� �
3
2 *

N=6 GHZ 6ð Þ�� �
{1, − 1,1} 3 {0,0,0}

ρ
ð6Þ
Wei xð Þ {x, − x, 2x− 1} 2x þ 2x - 1j j {0,0,0}

C 6ð Þ
1

��� E
{1, − 1,1} 3 *

C 6ð Þ
2

��� E
{1, − 1,1} 3 *

D 6ð Þ
3

��� E
{1,1, − 1} 3 {0,0,0}

ρ
6ð Þ
S {− 1, − 1,− 1} 3 {0,0,0}

N=7 GHZ 7ð Þ�� �
1ffiffi
2

p ; - 1ffiffi
2

p ; 0
n o ffiffiffi

2
p

0; π
56;

π
56

� �
ρ
ð7Þ
Wei xð Þ xffiffi

2
p ; - xffiffi

2
p ; 0

n o ffiffiffi
2

p
x 0; π

56;
π
56

� �
C 7ð Þ
1

��� E
1
2; -

1
2;

1
2

� �
3
2 *

N=8 GHZ 8ð Þ�� �
{1,1,1} 3 {0,0,0}

ρ
8ð Þ
Wei xð Þ {x, x, 2x− 1} 2x+ |2x− 1| {0,0,0}

C 8ð Þ
1

��� E
{1,1,1} 3 *

D 8ð Þ
4

��� E
{1,1,1} 3 {0,0,0}

ρ
8ð Þ
S {1,1,1} 3 {0,0,0}

(i) N-qubit GHZ states47 GHZ Nð Þ�� � ¼ 1ffiffi
2

p 00 � � � 00j i þ 11 � � � 11j ið Þ with N⩾ 3. (ii) N-qubit W states54 W Nð Þ�� � ¼ 1ffiffiffi
N

p 00 � � � 01j i þ 00 � � � 10j i þ � � � þ 10 � � � 00j ið Þ, with
N⩾ 3. (iii) N-qubit Wei states55,56 ρ

Nð Þ
Wei xð Þ ¼ x GHZ Nð Þ�� �

GHZ Nð Þ� ��þ 1 - xð Þ
2N

PN
k¼1 Pk þ Pk

 �

; where N⩾ 4, x∈ [0, 1] and Pk is the projector onto the binary N-qubit

representation of 2k−1, whereas Pi ¼ σ�N
1 Piσ�N

1 . (iv) N-qubit linear cluster states 9C Nð Þ
1 i corresponding to the N-vertex linear graph .14,38 (v) N-qubit

rectangular cluster states 9C Nð Þ
2 i corresponding to the N-vertex ladder-type graph 38,57 (vi) N-qubit (symmetric) Dicke states

9D Nð Þ
k i ¼ 1ffiffi

Z
p
P

iΠi 0j i�N - k � 1j i�k
� �

, which are superpositions of all states with k qubits in the excited state |1〉 and N − k qubits in the ground state |0〉, with the

symbol fΠi Uð ÞgZi¼1 denoting all the Z � N
k

� �
distinct permutations of 0’s and 1’s; we focus on half-excited Dicke states, given by k=N/2 for any even N.51,52,58,66

(vii) 4-qubit singlet state62 Ψð4Þ�� � ¼ 1ffiffi
3

p 0011j i þ 1100j i - 0101j i þ 0110j i þ 1001j i þ 1010j ið Þ=2½ �. (viii) N-qubit generalised Smolin states43,46,68 ρ Nð Þ
S for even N⩾4, which

are instances of M3
N states with correlation triple {(−1)N/2, (−1)N/2, (−1)N/2}, hence their entanglement quantification is exact. The asterisk indicates non-permutationally

invariant states for which the optimisation of the bounds requires different angles for each qubit (not reported here). Notice that in the table we listed mostly pure states.
In general, if the triple ~cj

� �
is optimal for a pure N-qubit state |Φ(N)〉, then for the mixed state ρ Nð Þ qð Þ ¼ q9Φ Nð Þ〉〈Φ Nð Þ9þ 1- q

2N
I�N , obtained by mixing |Φ(N)〉 with white

noise, one still gets nonzero lower bounds to global and partial entanglement for all q > 1=
P3

j¼1 ~cj
�� ��, as shown in Figure 3 for some representative examples.
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by means of a procedure that we name M3
N-fication, involving

only LOCC (see Materials and Methods). This immediately implies
that, for any M4 N=2d e, the multiparticle entanglement EDM of
ρ can have a nontrivial exact lower bound given by the
corresponding multiparticle entanglement of the M3

N state ϖ
with the same {cj},

EDM ϖ cjf g� �
�EDM ρð Þ; 8ρ : Tr ρσ�N

j

� �
¼ cj j ¼ 1; 2; 3ð Þ: ð4Þ

From a practical point of view, one needs only to measure the
three correlation functions {cj}, as routinely done in optical, atomic,
and spin systems,4,44,49,50 to obtain an estimate of the global and
partial multiparticle entanglement content of an unknown state ρ,
with no need for a full state reconstruction.
Furthermore, the lower bound can be improved if a partial

knowledge of the state ρ is assumed, as is usually the case for
experiments aiming to produce specific families of states for
applications in quantum information processing.44,45,49 In those
realisations, one typically aims to detect entanglement by
constructing optimised entanglement witnesses tailored on the
target states.4 By exploiting similar ideas, we can optimise the
quantitative lower bound in Equation (4) over all possible single-
qubit local unitaries applied to the state ρ before the M3

N-fication,

sup
U�

EDM ϖ ~c jf g� �
�EDM U�ρU

y
�

� �
¼ EDM ρð Þ; ð5Þ

where TrðU�ρU
y
�σ

�N
j Þ ¼ ~cj and U� ¼ �N

α¼1U
αð Þ denote a single-

qubit local unitary operation. Experimentally, the optimised bound
can then be still accessed by measuring a triple of correlation
functions ~cj

� �
given by the expectation values of correspondingly

rotated Pauli operators on each qubit, ~cj ¼〈Uy
�σ

�N
j U�〉, as

illustrated in Figure 2a. Optimality in Equation (5) can be achieved

by the choice of U⊗ such that ~hϖ ¼ 1
2

P3
j¼1 ~cj
�� �� - 1� �

is maximum.

The optimisation procedure can be significantly simplified when
considering a state ρ, which is invariant under permutations of any
pair of qubits. In such a case, one may need to optimise only over

three angles {θ,ψ,ϕ} parameterising a generic unitary applied to
each single qubit; the optimisation can be equivalently performed
over an orthogonal matrix acting on the Bloch vector of each
qubit (see Materials and Methods).
We can now investigate how useful our results are on concrete

examples. Table 3 presents a compendium of optimised analytical
lower bounds on the global and partial multiparticle entangle-
ment of several relevant families of N-qubit states,46,47,51,52,54–61 up
to N= 8. All the bounds are experimentally accessible by
measuring the three correlation functions ~cj

� �
, corresponding

to optimally rotated Pauli operators (Figure 2).
Let us comment on some cases where our analysis is

particularly effective. For GHZ states, cluster states, and half-
excited Dicke states, which constitute primary resources for
quantum computation and metrology,37,38 we get the maximum
hϖ= 1 for any even N. This means that our bounds remain robust
to estimate global and partial entanglement in noisy versions of
these states (i.e., when one considers mixtures of any of these
states with probability q and the maximally mixed state with
probability 1− q) for all q41/3. Notably, for values of q sufficiently
close to 1, our bounds to global entanglement can be tighter than
the (more experimentally demanding) ones derived very recently
in ref. 13, as shown in Figure 3a. Focusing on noisy GHZ states,
we observe, however, that our scale-invariant threshold q41/3,
obtained by measuring the three canonical Pauli operators for
each qubit, is weaker than the well-established inseparability
threshold q41/(1+2N− 1).9 Nevertheless, we note that our simple
quantitative bound given by Equation (4) becomes tight in the
paradigmatic limit of pure GHZ states (q= 1) of any even number
N of qubits, thus returning the exact value of their global
multiparticle entanglement via Equation (2), despite the fact that
such states are not (and are very different from) M3

N states.
Equation (4) also provides a useful nonvanishing lower bound to
the global (and partial) N-particle entanglement of Wei states in
the interval x∈ (12, 1], for any even N. A comparison between such a
bound (with D denoting the relative entropy), which requires only
three local measurements, and the true value of the relative
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Figure 3. (a) Lower bounds to the global geometric entanglement EDF
N based on infidelity for noisy versions of some N-qubit states (defined in

the caption of Table 3), as functions of the probability q of obtaining the corresponding pure states. The non-solid lines refer to bounds
obtained by the method of ref. 13 for: 4-qubit linear cluster state (green dotted), 6-qubit rectangular cluster state (red dashed), 6-qubit
half-excited Dicke state (orange dot-dashed), 4-qubit singlet state (magenta dot-dot-dashed). The solid blue line corresponds to our bound
based on M3

N-fication for all the considered states, which is accessible by measuring only the three correlation functions ~cj ¼〈�α~σ
αð Þ
j 〉.

(b) Relative entropy of multiparticle entanglement of N-qubit Wei states ρ Nð Þ
Wei defined in Table 3, as a function of the probability x of obtaining

a GHZ state. The dashed red line EDRE
N ρ

ðNÞ
Wei

� �
¼ x denotes the exact value of the global relative entropy of entanglement as computed in ref. 56.

The solid blue line denotes our accessible lower bound, obtained by combining Equations (2) and (5) with the expressions in Tables 2 and 3,

and given explicitly by EDRE
N;low ρ

Nð Þ
Wei

� �
¼ log 2 2 - 2xð Þ þ x log 2 xð Þ - log 2 1 - xð Þð Þ for 1

2ox⩽ 1, while it vanishes for 0⩽ x⩽ 1
2. The bound becomes

tight for x= 1, thus quantifying exactly the global multiparticle entanglement of pure GHZ states. We further show that our lower bound to

global entanglement coincides with the exact genuine multiparticle entanglement of Wei states, EDRE
N;low ρ

Nð Þ
Wei

� �
¼ EDRE

2 ρ
Nð Þ
Wei

� �
, that is computed

in the next section of this paper. The results are scale-invariant and hold for any even N.
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entropy of global N-particle entanglement for these states,56

whose experimental evaluation would conventionally require a
complete state tomography, is presented in Figure 3b.

Genuine multiparticle entanglement
We now show how general analytical results for geometric
measures of genuine multiparticle entanglement can be obtained
as well within our approach. The results from the previous section,
while quite versatile, cannot provide useful bounds for the
complete hierarchy of multiparticle entanglement, because M3

N
states are M-separable for all M⩽ N=2d e, and thus in particular
biseparable for any number N of qubits. Therefore, to investigate
genuine entanglement we consider a different reference set of
states, specifically formed by mixtures of GHZ states, hence
incarnating archetypical representatives of full inseparability.5,47

Any such state ξ, which will be referred to as a GHZ-diagonal
(in short, GN) state, can be written as ξ ¼Pi;7p7

i β7
i

�� �
β7
i

� ��
in terms of its eigenvalues p7

i , with the eigenvectors
β7
i

�� � ¼ 1ffiffi
2

p I�N7σ�N
1


 �
ij i forming a basis of N-qubit GHZ states

(where ij if g2N - 1i¼0 denotes the binary ordered N-qubit computa-
tional basis). The GN states have been studied in recent years as
testbeds for multiparticle entanglement detection,5,48 and specific
algebraic measures of genuine multiparticle entanglement such as
the N-particle concurrence18,21 and negativity14 have been
computed for these states. Here, we calculate exactly the whole
class of geometric measures of genuine multiparticle entangle-
ment ED2 defined by Equation (1), with respect to any contractive
and jointly convex distance D, for GN states of an arbitrary number
N of qubits.
By applying our general framework, we can prove that, for every

valid D, the closest biseparable state to any GN state can be found
within the subset of biseparable GN states (see Supplementary
Material for detailed derivations). The latter subset is well
characterised,5 and is formed by all, and only, the GN states with
eigenvalues such that pmax �maxi;7p7

i �1=2. We can then show
that the closest biseparable GN state to an arbitrary GN state has
maximum eigenvalue equal to 1/2, which allows us to solve the
optimisation in the definition of ED2 , with respect to every valid D.
We have then a closed formula for the geometric multiparticle
entanglement of any GN state ξ with maximum eigenvalue pmax,
given by

ED2 ξ p7
if g� �

¼ 0; pmax�1=2;
gD pmaxð Þ; otherwise;

�
ð6Þ

where gD denotes a monotonically increasing function whose
explicit form is specific to each distance D, as reported in Table 4
for typical instances.
Let us comment on some particular results. The genuine

multiparticle trace distance of entanglement EDTr
2 is found

to coincide with the genuine multiparticle negativity14 and
with half the genuine multiparticle concurrence18 for all GN states,

thus providing the latter entanglement measures with an
insightful geometrical interpretation on this important set of
states. Examples of GN states include several resources for
quantum information processing, such as the noisy GHZ states
and Wei states introduced in the previous section. In particular, for
noisy GHZ states (described by a pure-state probability q as
detailed in Table 3), we recover that every geometric measure of
genuine multiparticle entanglement is nonzero if and only if
q > ð1þ ð1 - 2NÞ - 1Þ=2

N441
����!1=2 (ref. 5) and monotonically

increasing with q, as expected; for q= 1 (pure GHZ states),
genuine and global entanglement coincide, i.e., the hierarchy of
Figure 1 collapses, meaning that all the entanglement of N-qubit
GHZ states is genuinely shared among all the N particles.32 On the
other hand, the relative entropy of genuine multiparticle
entanglement of Wei states55,56 can be calculated exactly via
Equation (6); interestingly, for even N it is found to coincide with
the lower bound to their global entanglement that we had
obtained by M3

N-fication, plotted as a solid line in Figure 3b. This
means that for these states also the genuine multiparticle
entanglement can be quantified entirely by measuring the three
canonical correlation functions {cj}, for any N. More generally, for
arbitrary GN states, all the genuine entanglement measures given
by equation (6) can be obtained by measuring the maximum GHZ
overlap pmax, which requires N+1 local measurement settings
given explicitly in ref. 48. This is remarkable, as with the same
experimental effort needed to detect full inseparability5 we have
now a complete quantitative picture of genuine entanglement in
these states based on any geometric measure, agreeing with and
extending the findings of refs 14,18. Furthermore, as evident from
Equation (6), all the geometric measures are monotonic functions
of each other: our analysis thus reveals that there is a unique
ordering of genuinely entangled GN states within the distance-
based approach of Figure 1.
In the same spirit as the previous section, and in compliance

with our general framework, we note that the exact results
obtained for the particular reference family of GN states provide
quantitative lower bounds to the genuine entanglement of
general N-qubit states. This follows from the observation that
any N-qubit state ρ can be transformed into a GN state with
eigenvalues p7

i ¼ β7
i

� ��ρ β7
i

�� �
by an LOCC procedure that

we may call GHZ-diagonalisation.14 Therefore, given a completely
general state ρ, one only needs to measure its overlap with a
suitable reference GHZ state; if this overlap is found larger than
1/2, then by using Equation (6) with pmax equal to the measured
overlap one obtains analytical lower bounds to the genuine
multiparticle entanglement ED2 of ρ with respect to any desired
distance D. As before, the bounds can be optimised in situations
of partial prior knowledge—e.g., by applying local unitaries on
each qubit before the GHZ-diagonalisation, which has the effect of
maximising the overlap with a chosen particular GHZ vector in the
basis β7

i

�� �� �
. The bounds then remain accessible for any state ρ

by N+1 local measurements,48 with exactly the same demand as
for just witnessing entanglement.5

For instance, for the singlet state |Ψ(4)〉,62 which is a relevant
resource in a number of quantum protocols including multiuser secret
sharing,63–65 one has pmax ¼ βþ3 Ψ 4ð Þ�� �

Ψ 4ð Þ βþ3
�� � ¼ 2=3 > 1=2

��
,

obtainable by measuring the overlap with the GHZ basis state
βþ3
�� � ¼ 0011j i þ 1100j ið Þ= ffiffiffi

2
p

. Optimised bounds to the genuine

multiparticle entanglement of half-excited Dicke states D Nð Þ
N=2

��� E
(for

even N⩾ 4), defined in Table 3,58,66 can be found as well based on

GHZ-diagonalisation, and are expressed by p Nð Þ
max ¼ N

N=2

� �
21 -N ,

meaning that they become looser with increasing N and stay
nonzero only up to N= 8. In this respect, we note that alternative
methods to detect full inseparability of Dicke states for any N are

Table 4. Analytical expression of genuine multiparticle entanglement
ED2 for GHZ-diagonal states of any number N of qubits as defined by
Equation (6), for representative choices of the distance function D
(introduced in Table 2)

Distance D gD(pmax)

Relative entropy DRE 1+pmax log2 pmax+(1− pmax) log2(1− pmax)

Trace DTr pmax - 1
2

Infidelity DF
1
2-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmax 1 - pmaxð Þp

Squared Bures DB 2 -
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 - pmax

p þ ffiffiffiffiffiffiffiffiffi
pmax

p
 �
Squared Hellinger DH 2 -

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 - pmax

p þ ffiffiffiffiffiffiffiffiffi
pmax

p
 �
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available,4,51,52 but quantitative results are lacking in general.
Nevertheless, applying our general approach to an alternative
reference family more tailored to the Dicke states could yield
tighter lower bounds that do not vanish beyond N= 8.
Finally, notice that a lower bound to a distance-based measure

of genuine multiparticle entanglement, as derived in this section,
is automatically also a lower bound to corresponding measures of
global and any form of partial entanglement, as evident by
looking at the geometric picture in Figure 1. However, for states
that are entangled yet not genuinely entangled, the simple bound
from the previous section remains instrumental to assess their
inseparability with minimum effort. M3

N states are themselves
instances of such states (in fact, for even N, M3

N states are also GN

states, but with pmax⩽ 1/2 for N42).

Applications to experimental states
In this section, we benchmark the applicability of our results to
real data from recent experiments.44,49–52,67

In, refs 44,45 the authors used quantum optical setups to
prepare an instance of a bound entangled four-qubit state, known
as Smolin state.68 Such a state cannot be written as a convex
mixture of product states of the four qubits, yet no entanglement
can be distilled out of it, thus incarnating the irreversibility in
entanglement manipulation, while still representing a useful
resource for information locking and quantum secret sharing.3,46

It turns out that noisy Smolin states are particular types of M3
N

states (for any even N),43,46 that in the representation of Figure 2b

are located along the segment connecting the tetrahedron vertex
{(−1)N/2, (−1)N/2, (−1)N/2} with the origin. Therefore, this work
provides exact analytical formulae for all the nontrivial hierarchy
of their global and partial entanglement, as mentioned in Table 3.
In the specific experimental implementation of ref. 44 for N= 4,
the global entanglement was detected (but not quantified) via a
witness constructed by measuring precisely the three correlation
functions {cj}. On the basis of the existing data alone (and without
assuming that the produced state is within the M3

N family), we
can then provide a quantitative estimate to the multiparticle
entanglement of this experimental bound entangled state in
terms of any geometric measure EDM, by using Table 2. The results
are reported in Table 5a for the illustrative case of the trace
distance.
Remaining within the domain of quantum optics, recently two

laboratories reported the creation of six-photon Dicke states

9D 6ð Þ
3 i.51,52 Dicke states58 are valuable resources for quantum

metrology, computation and networked communication and
emerge naturally in many-body systems as ground states of the
isotropic Lipkin–Meshkov–Glick model.66 On the basis of the
values of the three correlation functions {cj}, which were measured
in refs 51,52 to construct some entanglement witnesses, we can
provide quantitative bounds to their global and partial geometric
entanglement EDM (for 4⩽M⩽ 6) from Equation (4); see Table 5a.
A series of experiments at Innsbruck40,49,50,67 resulted in the

generation of a variety of relevant multi-qubit states with trapped
ion setups, for explorations of fundamental science and for the

Table 5. Accessible lower bounds to global, partial and genuine multiparticle entanglement for a variety of experimental quantum states

a Global and partial multiparticle entanglement

State Reference Fidelity (%) f~c1; ~c2; ~c3g
P3

j¼1 ~cj
�� �� EDTr

M

ρ
4ð Þ
S 44 96.83± 0.05 {0.401± 0.004,0.362± 0.004,0.397± 0.008} 1.16± 0.01 0.040± 0.002

ρ
6ð Þ
D3

51 56± 2 {0.8± 0.2,0.5± 0.2, − 0.3± 0.1} 1.6± 0.3 0.15± 0.08

ρ
6ð Þ
D3

52 65± 2 {0.63± 0.02,0.63± 0.02, − 0.42± 0.02} 1.69± 0.04 0.17± 0.01

ρ
3ð Þ
GHZ 67 87.9 {− 0.497,0.515, − 0.341} 1.35 0.102

ρ
4ð Þ
GHZ 67 80.3 {0.663,0.683,0.901} 2.25 0.312

ρ
4ð Þ
WA

67 19.4 {− 0.404,0.454, − 0.378} 1.24 0.0589

ρ
4ð Þ
WB

67 31.4 {0.472, − 0.468, − 0.446} 1.39 0.0963

b Genuine multiparticle entanglement

State Reference Fidelity (%) EDRE
2 EDTr

2 EDF
2 EDB

2

ρ
3ð Þ
GHZ 50 97.0± 0.3 0.81± 0.02 0.470± 0.003 0.329± 0.008 0.36± 0.01

ρ
4ð Þ
GHZ 50 95.7± 0.3 0.74± 0.01 0.457± 0.003 0.297± 0.007 0.323± 0.008

ρ
5ð Þ
GHZ 50 94.4± 0.5 0.69± 0.02 0.444± 0.005 0.27± 0.01 0.29± 0.01

ρ
6ð Þ
GHZ 50 89.2± 0.4 0.51± 0.01 0.392± 0.004 0.190± 0.005 0.200± 0.006

ρ
8ð Þ
GHZ 50 81.7± 0.4 0.313± 0.009 0.317± 0.004 0.113± 0.003 0.117± 0.003

ρ
10ð Þ
GHZ 50 62.6± 0.6 0.046± 0.004 0.126± 0.006 0.016± 0.002 0.016± 0.002

ρ
14ð Þ
GHZ 50 50.8± 0.9 0.0002± 0.0004 0.008± 0.009 0.0001± 0.0001 0.0001± 0.0001

(a) Accessible lower bounds to global and partial multiparticle entanglement of some experimentally prepared states, given by Equation (5) and evaluated in
particular for the trace distance of entanglement EDTr by using Equation (2) for even N and Equation (3) for odd N. Following the theoretical analysis of Table 3,
data obtained by direct measurements of the canonical correlation functions were used to construct bounds for a noisy Smolin state of 4 photons,44 noisy Dicke
states of 6 photons51,52 and noisy GHZ states of four ions.67 For noisy GHZ states of three ions and noisy W states of four ions (two implementations labelled as A
and B),67 full data sets were used to extract the optimised correlation functions ~cj

� �
required for the bounds. For all the presented experimental states (whose

fidelities with the ideal target states are reported for reference), we are able to provide a reliable estimate of the multiparticle entanglement EDM for any M4 N=2d e.
(b) Lower bounds to genuine multiparticle entanglement of experimental noisy GHZ states of up to 14 ions,50 as quantified in terms of all the distance-based
entanglement measures ED2 reported in Table 4, obtained by Equation (6) with pmax given in each case by the measured fidelity with the pure reference GHZ state.
All the reported entanglement estimates are obtained from the same data needed to witness full inseparability, which for general N-qubit states can be accessed
by N+1 local measurements without the need for a full tomography.
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implementation of quantum protocols. In those realisations, data
acquisition and processing for the purpose of entanglement
verification was often a more demanding task than running the
experiment itself.49 Focusing first on global and partial entangle-
ment, we obtained full datasets for experimental density matrices
corresponding to particularly noisy GHZ and W states of up to four
qubits, produced during laboratory test runs.67 Despite the
relatively low fidelity with their ideal target states, we still obtain
meaningful quantitative bounds from Equation (5). The results are
compactly presented in Table 5a.
Regarding now genuine multiparticle entanglement, the

authors of ref. 50 reported the creation of (noisy) GHZ states of
up to N= 14 trapped ions. In each of these states, full inseparability
was witnessed by measuring precisely the maximum overlap pmax

with a reference pure GHZ state, without the need for complete
state tomography. Thanks to Equation (6), we can now use the
same data to obtain a full quantification of the genuine N-particle
entanglement of these realistic states, according to any measure
ED2 , at no extra cost in terms of experimental or computational
resources. The results are in Table 5b, for all the representative
choices of distances enumerated in Table 4. Notice that we do not
need to assume that the experimentally produced states are in the
GN set: the obtained results can be still safely regarded as lower
bounds.

DISCUSSION
We have introduced a general framework for estimating and
quantifying geometric entanglement monotones. This enabled us
to achieve a compendium of exact results on the quantification of
general distance-based measures of (global, partial and genuine)
multiparticle entanglement in some pivotal reference families of
N-qubit mixed states. In turn, these results allowed us to establish
faithful lower bounds to various forms of multiparticle entangle-
ment for arbitrary states, accessible by few local measurements
and effective on prominent resource states for quantum informa-
tion processing.
Our results can be regarded as realising simple yet particularly

convenient instances of quantitative entanglement witnesses,22,23

with the crucial advance that our lower bounds are analytical
(in contrast to conventional numerical approaches requiring
semidefinite programming) and hold for all valid geometric
measures of entanglement, which are endowed with meaningful
operational interpretations yet have been traditionally hard to
evaluate.13,69

A key aspect of our analysis lies in fact in the generality of the
adopted techniques, which rely on natural information-theoretic
requirements of contractivity and joint convexity of any valid
distance D entering Equation (1). We can expect our general
framework to be applicable to other reference families of states
(for example, states diagonal in a basis of cluster states,14,69 or
more general states with X-shaped density matrices18), thereby
leading to alternative entanglement bounds for arbitrary states,
which might be more tailored to different classes, or to specific
measurement settings in laboratory.
Furthermore, our framework lends itself to numerous other

applications. These include the obtention of accessible analytical
results for the geometric quantification of other useful forms of
multiparticle quantum correlations, such as Einstein–Podolsky–
Rosen steering,70,71 and Bell nonlocality in many-body systems.66

This can eventually lead to a unifying characterisation, resting on
the structure of information geometry, of the whole spectrum
of genuine signatures of quantumness in cooperative
phenomena. We plan to extend our approach in this sense in
subsequent works.
Another key feature of our results is the experimental

accessibility. Having tested our entanglement bounds on a
selection of very different families of theoretical and

experimentally produced states with high levels of noise, we can
certify their usefulness in realistic scenarios. We recall that, for
instance, three canonical local measurements suffice to quantify
exactly the global entanglement of GHZ states of any even
number N of qubits, whereas N+1 local measurements provide
their exact genuine entanglement, according to every geometric
measure for any N, when such states are realistically mixed with
white noise. Compared with other complementary studies of
accessible quantification of multiparticle entanglement,13–23 our
study retains not only a comparably low resource demand but
also crucial aspects such as efficiency and versatility, as shown in
Table 1. This can lead to a considerable simplification of
quantitative resource assessment in future experiments based
on large-scale entangled registers, involving e.g., two quantum
bytes (16 qubits) and beyond.50,67

MATERIALS AND METHODS
Distance-based measures of multiparticle entanglement
A general distance-based measure of multiparticle entanglement EDM is
defined in Equation (1). In this work, the distance D is required to satisfy
the following two physical constraints:
(D.i) Contractivity under quantum channels, i.e., D Ω ρð Þ;Ω ρ0ð Þð Þ

�D ρ; ρ0ð Þ, for any states ρ, ρ′, and any completely positive trace
preserving map Ω;
(D.ii) Joint convexity, i.e., D qρþ 1 - qð Þρ0; qχ þ 1 - qð Þχ0ð Þ�qD ρ; χð Þ

þ 1 - qð ÞD ρ0; χ0ð Þ, for any states ρ, ρ0 , χ, and χ′, and any q∈ [0, 1].
Constraint (D.i) implies that EDM is invariant under local unitaries and

monotonically nonincreasing under LOCC (i.e., it is an entanglement
monotone24). Constraint (D.ii) implies that EDM is also convex. A selection of
distance functionals with respect to these properties is given in Table 2.

M3
N-fication Theorem. Any N-qubit state ρ can be transformed into a

correspondingM3
N stateϖ through a fixed transformation, Θ, consisting of

single-qubit LOCC, such that Θ ρð Þ ¼ ϖ ¼ 1
2N
ðI�N þP3

i¼1 ciσ
�N
i Þ; where

ci ¼ Tr ρσ�N
i


 �
.

Proof. Here we sketch the form of the M3
N-fication channel Θ. We

begin by setting 2(N− 1) single-qubit local unitaries Uj
� �2 N - 1ð Þ

j¼1 ¼
σ1 � σ1 � I�N - 2
 ��

, I� σ1 � σ1 � I�N - 3
 �
,…, I�N - 3 � σ1 � σ1 � I


 �
,

I�N - 2 � σ1 � σ1

 �

, σ2 � σ2 � I�N - 2
 �
, I� σ2 � σ2 � I�N - 3
 �

,…,
I�N - 3 � σ2 � σ2 � I

 �

, I�N - 2 � σ2 � σ2

 �g. Then, we fix a sequence of

states {ρ0, ρ1, … ρ2 N - 1ð Þ} defined by ρj ¼ 1
2 ρj - 1 þ Ujρj - 1U

y
j

� �
; for j∈ {1, 2,

… 2(N− 1)}. By setting ρ0 ¼ ρ and ρ2 N - 1ð Þ ¼ Θ ρð Þ, we define the required

channel: Θ ρð Þ ¼ 1
22 N - 1ð Þ

P22 N - 1ð Þ
i¼1 U′

iρU
′y
i , where: U′

i

� �22 N - 1ð Þ

i¼1 ¼ I�N; Ui1f g2 N - 1ð Þ
i1¼1 ;

n
Ui2Ui1f g2 N - 1ð Þ

i2>i1¼1,…, Ui2 N - 1ð Þ ¼Ui2Ui1

n o2 N - 1ð Þ

i2 N - 1ð Þ>¼>i2>i1¼1
g. Notice that U′

i

� �22 N - 1ð Þ

i¼1

is still a sequence of single-qubit local unitaries. Since Θ is a convex
mixture of such local unitaries, it belongs to the class of single-qubit LOCC,
mapping any M-separable set into itself. In the Supplementary Material,
we show that Θ ρð Þ ¼ ϖ, concluding the proof.

Lower-bound optimisation
For any valid distance-based measure of global and partial multiparticle
entanglement EDM, the maximisation in Equation (5) is equivalent (for

even N) to maximising ~c1j j þ ~c2j j þ ~c3j j, where ~cj ¼ Tr U�ρU
y
�σ

�N
j

h i
, over

local single-qubit unitaries U⊗=⊗α U(α) (α= 1,…, N). By using the
well-known correspondence between the special unitary group SU(2) and
special orthogonal group SO(3), we have that to any one-qubit
unitary U(α) corresponds the orthogonal 3 × 3 matrix O(α) such
that U αð Þ n!U σ!U αð Þy ¼ O αð Þ n!
 �

U σ!, where n!¼ n1; n3; n3f gAℝ3 and
σ!¼ σ1; σ2; σ3f g is the vector of Pauli matrices. We have then that
sup U αð Þf g ~c1j j þ ~c2j j þ ~c3j jð Þ¼ sup O αð Þf g ~T 11���1

�� ��þ ~T 22���2
�� ��þ ~T 33���3

�� ��
 �
, where

~T i1 i2 ���iN ¼Pj1 j2 ���jN T j1 j2 ���jNO
1ð Þ
i1 j1

O 2ð Þ
i2 j2

� � �O Nð Þ
iN jN

, and T i1 i2 ���iN ¼ Tr ρ σi1 � σi2ð½
� � � � � σiN Þ�. In the case of permutationally invariant states ρ, the
3 × 3×⋯×3 tensor T i1 i2 ���iN is fully symmetric, i.e., T i1 i2 ���iN ¼ Tϑ i1 i2 ���iNð Þ for
any permutation ϑ of the indices, so that the optimisation can be achieved
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when O(1) =O(2) =⋯=O(N) (ref. 72). As indicated in the main text, we then
need to perform the maximisation over just the three angles {θ,ψ,ϕ}, which
determine the orthogonal matrix O(α) corresponding to an arbitrary single-
qubit unitary

U αð Þ ¼ cos y
2e

- iψþϕ
2 - i sin y

2e
- iϕ-ψ

2

- i sin y
2e

iϕ -ψ
2 cos y

2e
iψþϕ

2

 !
:

As a special case, for a two-qubit state (N= 2) the optimal local operation is
the one which diagonalises the correlation matrix T i1 i2ð Þ.
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