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Clinical detection of deletion structural variants
in whole-genome sequences
Aaron C Noll1,2,3, Neil A Miller1, Laurie D Smith1,2,4, Byunggil Yoo1, Stephanie Fiedler5, Linda D Cooley4,5, Laurel K Willig1,3,4,
Josh E Petrikin1,3,4, Julie Cakici6, John Lesko1, Angela Newton1, Kali Detherage1, Isabelle Thiffault1,4,5, Carol J Saunders1,4,5,
Emily G Farrow1,3,4 and Stephen F Kingsmore2,6

Optimal management of acutely ill infants with monogenetic diseases requires rapid identification of causative haplotypes.
Whole-genome sequencing (WGS) has been shown to identify pathogenic nucleotide variants in such infants. Deletion structural
variants (DSVs, 450 nt) are implicated in many genetic diseases, and tools have been designed to identify DSVs using short-read
WGS. Optimisation and integration of these tools into a WGS pipeline could improve diagnostic sensitivity and specificity of WGS.
In addition, it may improve turnaround time when compared with current CNV assays, enhancing utility in acute settings. Here we
describe DSV detection methods for use in WGS for rapid diagnosis in acutely ill infants: SKALD (Screening Konsensus and
Annotation of Large Deletions) combines calls from two tools (Breakdancer and GenomeStrip) with calibrated filters and clinical
interpretation rules. In four WGS runs, the average analytic precision (positive predictive value) of SKALD was 78%, and recall
(sensitivity) was 27%, when compared with validated reference DSV calls. When retrospectively applied to a cohort of 36 families
with acutely ill infants SKALD identified causative DSVs in two. The first was heterozygous deletion of exons 1–3 of MMP21 in trans
with a heterozygous frame-shift deletion in two siblings with transposition of the great arteries and heterotaxy. In a newborn
female with dysmorphic features, ventricular septal defect and persistent pulmonary hypertension, SKALD identified the
breakpoints of a heterozygous, de novo 1p36.32p36.13 deletion. In summary, consensus DSV calling, implemented in an 8-h
computational pipeline with parameterised filtering, has the potential to increase the diagnostic yield of WGS in acutely ill neonates
and discover novel disease genes.
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INTRODUCTION
Mendelian diseases, in toto, consume substantial healthcare
resources.1–3 Recent advances in genomics technologies and
computational analysis have yielded unprecedented progress
towards understanding the relationship of genomic variation to
infant morbidity and mortality.4 Genetic diseases, chromosomal
aberrations and congenital malformations are the leading cause of
infant mortality in the US.5–7 By detecting disease causing single
nucleotide (nt) variants (SNVs) and small nucleotide (o50 nt)
insertions and deletions (indels), rapid whole-genome sequencing
(WGS) has accelerated and improved the sensitivity for the
diagnosis of genetic illness in neonates.8–10 We have recently
shown that over one half of acutely ill newborns with likely
genetic diseases, enroled from a neonatal intensive care unit
(NICU), were diagnosed using rapid WGS, with a median time of
23 days between consent and reporting of results.9,10 However,
disease-causative alleles are not always nucleotide variants.
Structural variants (SVs, copy number variations, translocations
and inversions 4500 bp in length) also contribute prominently to
birth defects, Mendelian diseases and complex genetic diseases.11

Insertion and deletion copy number variants (CNV) are the most
common types of SV.12 Although current estimates are subject to
the limitations of identification by current technologies, the

average diploid human genome differs from the reference
genome by at least 700 CNVs, totalling at least 11 Mb,13,14 and
encompassing ~ 400 genes.13,15–19 De novo CNV mutations arise
via genomic rearrangements, in cis (via intra-chromosomal events)
or in trans (interchromosomal), and through nonallelic homo-
logous recombination and nonhomologous recombination. CNV
length varies from a few hundred nucleotides to tens of
millions.20,21 Their size distribution is skewed, with smaller SVs
being the most frequent.15,22 CNV rates vary widely at different
loci (1.7 × 10− 6 to 1 × 10− 4 per locus per generation).23 The
mutation mechanism and selection pressure differ between
insertion and deletion SVs (DSV).22 DSVs are approximately three
times more common than insertions, and meiotic DSV rates in
human sperm at four hotspots were shown to be at least twofold
higher than for insertions.24,25 There is a strong purifying selection
for deletions in exons and introns due to their potential for
deleterious phenotypes.22 Thus, the impact of DSVs can range
from having no discernible outcome to being incompatible
with life.12

DSVs are known to be the most common type of mutation for
many single gene diseases, including Duchenne Muscular
Dystrophy, juvenile Batten disease, Spinal Muscular Atrophy,
Pelizaeus–Merzbacher Disease, Williams–Beuren syndrome, Smith
Magenis syndrome, Hereditary Neuropathy with Liability to
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Pressure Palsy, Miller–Dieker lissencephaly, 22q11.2 deletion
syndrome, Thalassaemia and Ichthyosis, among many others.12,15

In other conditions such as Neurofibromatosis type 1, Tuberous
Sclerosis, Sotos syndrome, CHARGE syndrome, Gaucher disease,
Pituitary dwarfism and red green colour blindness deletions are
less common12,15 but an important source of gene disruption
justifying the need for comprehensive deletion detection. De novo
DSVs are a risk factor for autism spectrum disorder26 and rare DSVs
have been associated with schizophrenia.27 DSVs near genes are
also thought to contribute to Crohn's disease, psoriasis and
osteoporosis.22 While specific genetic tests are available for
molecular diagnosis of many of these disorders, an as yet
unattained goal for clinical WGS is to include the identification
of a broad spectrum of DSVs for comprehensive aetiologic
diagnosis of genetic diseases.
Karyotyping and fluorescence in situ hybridisation (FISH) have

historically been used to identify large SVs (40.5 Mb), but are
limited by poor resolution.11 Array comparative genomic hybridi-
sation (array CGH) and single nucleotide polymorphism (SNP)
arrays are the current gold standard methods for detection of
disease-associated CNVs.13 Array CGH involves comparative
hybridisation of a test and reference sample, with inference of
CNV gain or loss from signal ratio. For SNP arrays, a single sample
is hybridised, and SNP probe log ratios are used to detect CNV
gains or losses.28 These methods have lower breakpoint resolution
than sequencing, and balanced structural rearrangements, e.g.,
translocations, inversions, are not detectable. Unless custom
designed for specific loci, these methods do not generally detect
SVso10 kb.29

Short-read WGS data can also be used to detect insertion and
DSVs.29 Paired end mapping (PEM), depth of coverage (DOC), split
read mapping (SRM) and local assembly are the four principal
methods used to detect SVs in WGS data.30 The DOC approach
identifies CNVs by read depth in sequential genomic windows that
is greater or less than a predefined (e.g., using a parametric model)
or dynamically determined background level. Paired ends are
nucleotide sequences from the ends of DNA fragments. In PEM,
pairs with a mapping distance congruent with the intended DNA
fragment size and expected orientation are deemed concordant.
Non-concordant pair mapping signatures are used to infer if an
event is an insertion (mapping distance less than expected),
deletion (mapping distance greater than expected), inversion
(mapping orientation opposite to expected) or translocation (pairs
map to different chromosomes). In PEM, the maximum detectable
insertion size is limited by the library fragment length, but there
are no size limits for detection of DSVs or translocations. The SRM
method identifies CNV breakpoints occurring within reads. In SRM,
at least one of the segments resulting from read bifurcation must
align to a unique genome location. Of these four modes of
SV discovery, whole-genome assembly may hold the greatest,

long-term promise for accurately typing all SV forms.15

Unfortunately none of these approaches is comprehensive. In
the interim, for a typical WGS sample, large proportions of
validated SVs will be unique to each method. Although only DOC
accurately predicts absolute gains or losses, it does not resolve
breakpoints well. PEM requires consistent fragment sizes and
performs poorly in repetitive loci. Similarly, SRM and short-read
sequence assembly are unreliable in non-unique regions.29

Numerous permutations of these four paradigms have been
implemented as computational tools, yet there is a lack of
consensus regarding which have the best performance and
standard SV detection pipelines for use in WGS for the diagnosis
of genetic diseases does not yet exist.
Clinical grade SV detection is critical both for the diagnosis

of certain genetic disorders, and, broadly, for the assessment of
missing causative haplotypes. Here we report comparisons of
several existing tools for detection of SVs in WGS data, and the
development of an improved SV detection pipeline—SKALD
(Screening Konsensus and Annotation of Large Deletions)—based
on consensus, filtered SV calls. We focused initially on DSVs since
they are the most numerous,18,24,31 deleterious25 and readily
detectable type of SV in paired end WGS data.30

We also report an initial application of SKALD for molecular
diagnosis of genetic diseases by rapid WGS of familial trios or
quartets in which the proband was an acutely ill infant receiving
care in an intensive care unit. Specifically, we demonstrate
how the integration of SKALD DSV detection into a WGS
variant detection pipeline might provide a more comprehensive
molecular diagnosis strategy for genetic disease in a time-frame
consistent with clinical management decisions.

RESULTS
Evaluation of structural variation detection tools using simulated
WGS data
A literature survey identified 50 software tools (Supplementary
Table S1) capable of detecting SVs in short-read WGS. The
methods used a variety of approaches to detect SVs (Table 1): DOC
methods detected DSVs on the basis of a local decrease in
mapped read depth compared with unaffected, flanking regions.
PEM methods predicted DSVs on the basis of significantly
increased interval between the coordinates of mapped read pairs
relative to those mapping to unaffected, flanking regions.30 Ten of
the 50 methods did not require substantial effort for installation or
execution, did not require a control sample, supported the widely
used .bam format,32 and could be run concurrently on multiple
processors (Table 1). The performance of these 10 methods in DSV
detection was evaluated using a simple human chromosome 1
DSV simulation set that featured perfect read matches
(no nucleotide variants or sequence errors) and 200 homozygous

Table 1. Software tools evaluated for performance in detection of DSVs in WGS

Software tool Primary SV detection methods employed Chr 1 simulation WGS simulation

Breakdancer PEM PASS PASS
Clever Read alignment graph and max cliques PASS
Cn.MOPS DOC and Poisson distribution
Control-freec SNP B allele frequencies and DOC PASS
Dindel Realignment with probabilistic indel calls
ERDS DOC and paired Hidden Markov Model PASS
GasvPRO DOC, PEM and probabilistic model
GenomeStrip DOC, PEM and SRM PASS PASS
Lumpy PEM and DOC (SRM with special aligner) PASS
SVDetect DOC, PEM

Abbreviations: BD, breakdancer; DOC, depth of coverage; ERDS, estimation by read depth with single-nucleotide variants; GS, GenomeStrip; PEM, paired end
mapping; SNP, single nucleotide polymorphism; SRM, split read mapping; TP, true positive; WGS, whole-genome sequence.
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DSVs of size 500–10,000 nt. Read depth, repetitive regions and GC
content can influence the accuracy of DSV predictions.33

Comparison of these attributes between the simulated set and
Chr 1 reference data showed that GC content and repeat feature
frequency differed by o10%, and the simulation mean read
depth was found to be nearly identical to the target × 40
(Supplementary Figure S1). Simulated DSVs had stretched read
pairs spanning breakpoints with uniform inner and outer
read depths, required for PEM and DOC detection methods,
respectively (Supplementary Figures S2 and S3).
Six methods identified true positive (TP), simulated DSVs

in this simulation (Breakdancer (BD), Clever, Control-Freec, ERDS,
GenomeStrip (GS) and Lumpy; Table 2). GS, BD and ERDS exhibited
the best performance, with recall (sensitivity or TP rate) of 54%,
37% and 55%, respectively, and precision (positive predictive
value (PPV)) of 18%, 81% and 11%, respectively (Table 2).
However, these values were less impressive in light of the
simplicity of the test data set and requirement for calls to overlap
a reference DSV by only 1 nt to be classified as TP. In contrast, the
sensitivity and recall of nucleotide variant calls in clinical WGS with
best practice methods are 499.5% and 499.9%, respectively.9,34

Performance of the six methods that identified TP, simulated
DSVs was further evaluated using a more complex, genome-wide
DSV simulation set that included homozygous and heterozygous
DSVs, and typical WGS rates for nucleotide variants and
sequencing errors. In the latter, BD and GS exhibited superior
recall (or sensitivity), precision (PPV) and F2 measure (Figure 1).
The difference in sensitivity between homozygous and
heterozygous deletion predictions of these methods was o1%.
In contrast to nucleotide variant identification, the overlap of

the start and end coordinates of predicted and actual DSV were
imprecise. Thus, the performance of the methods decreased as the
required overlap between predicted and actual DSV coordinates
increased. BD and GS alone, however, had stable performance
metrics between overlap of predicted and actual DSV coordinates
between 1 nt and 87% (Figure 1). In contrast, e.g., the performance
of Lumpy dropped substantially at an overlap requirement450%.
The sensitivity (recall) of BD and GS at 87% overlap of predicted
and actual DSV coordinates was 85% and 88%, respectively
(Figure 1). The precision (PPV) of BD and GS at the same overlap
were 93% and 92%, respectively.
Mechanistically, the results of the WGS simulation implied that

PEM (BD) was the single best method for DSV detection, albeit a
combination of PEM, DOC and SRM methods (GS) was optimal. We
explored how to combine the results of BD and GS to achieve
highest analytic performance. Compared with the BD or GS alone,
consensus DSV calls from a combination of the two methods with
90% prediction overlap (BD ∩ 90% GS) was 3.8% less sensitive than
BD or GS alone, and yielded a 3.3% improvement in precision
(PPV). Given the lack of net improvement in analytic performance
of BD ∩ 90% GS, we elected to seek maximal sensitivity (recall) by

combining the DSV calls from BD and GS (BD U GS), and then to
identify and apply filtering steps that would confer high
precision (PPV).

Evaluation of BD and GS with four experimental WGS replicates of
NA12878
NA12878, a HapMap CEU trio proband35 was chosen for
experimental analysis of DSV detection methods, as it had been
extensively sequenced by the 1,000 genomes project (1KGP),36

and has been selected as SV benchmark by the National Institutes
of Standards and Technology.37 We generated four experimental
NA12878 data sets comprising two 2× 250 nt and two 2× 100 nt
40 × WGS.

Establishment of classifier for improved precision of DSV
predictions in combined BD and GS calls
We sought out to establish a classification algorithm to maximise
precision (PPV) in combined DSV calls from BD and GS (BD U GS).
Three different classification algorithms were evaluated and
model attributes were either those used in the DOC and PEM
methods or derived from visualisation of TP and false positives
(FP) DSV predictions. For example, when viewed in Integrated
Genome Viewer (IGV, Broad Institute, Boston, MA, USA), many FP
DSVs were very large or were associated with ineffective unique
read mapping to repetitive regions. The initial set of DSV precision
attributes chosen for parameterisation in the classification
algorithms were: Maximum depth ratio (ratio of read depth within
a DSV to that flanking the DSV), DSV size, number of supporting
paired reads, number of repeat features that overlap the DSV call
and number of exons overlapping the DSV call.
Linear discriminate analysis, logistic regression and random

forest are three common algorithms for establishing a classifica-
tion model.38,39 There is currently no all-encompassing gold
standard set of DSVs for any human genome. HapMap sample
NA12878, from a US female of northern European ancestry, has
become the gold standard for nucleotide variant calls. During this
study, three independent sets of DSV coordinates from NA12878
were published that had been verified by more than one
technology (Mills et al.,40 Layer et al.41 and Zook et al.,42

respectively; Figure 2a), containing 3,382, 4,021, and 2,664 DSV
calls, respectively. With the caveat that DSV call concordance is
highly dependent on the cutoff in overlap of chromosomal start
and stop coordinates, when requiring a reciprocal overlap in
chromosomal coordinates of 450%, 1,815 (33%) of DSVs were
common to the 3 reference sets. Thus, while extremely useful,
none of these alone represented a complete gold standard set.
In total, they contained 5,536 unique DSVs (with o50% overlap in
chromosomal coordinates). Likewise, chromosomal microarrays
(SNP arrays) are considered the gold standard for clinical
diagnostic testing of DSVs. We generated two Affymetrix SNP

Table 2. Wide differences in the performance of the five SV detection tools that detected a true positive in a simulated Chr 1 DSV data set

Software tool TPa FP FN Recall (sensitivity)b Precision (positive predictive value)c F2 measure

Breakdancer 102 24 168 37.78% 81.0% 42.3%
Clever 32 1,683 238 11.9% 1.9% 5.7%
Control-freec 5 449 265 1.9% 1.1% 1.6%
ERDS 149 1,204 121 55.2% 11.0% 30.6%
GenomeStrip 146 673 124 54.1% 17.8% 38.4%
Lumpy 247 526,524 23 91.5% 0.05% 0.2%

Abbreviations: DSV, deletion structural variant; ERDS, estimation by read depth with single-nucleotide variants; FN, false negative; FP, false positive; TP, true
positive.
aDSV predictions that overlapped a DSV by 41 nt.
bTP/(TP+FN).
cTP/(TP+FP).
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array (Thermo Fisher Scientific Inc., Santa Clara, CA, USA) data sets
for sample NA12878. They contained only 2% (131) and 3% (175)
as many DSV calls as the verified sets. Furthermore, only 67 (28%)
of DSVs were common to the two SNP array sets (when requiring a
reciprocal overlap in chromosomal coordinates of 490%). The
average size of DSV detected by SNP array was ~ 10,000 nt,
compared with ~ 1,000 nt with BD and GS (Supplementary
Figure S4). Thus, SNP arrays are insensitive for detection of DSVs,
particularly DSVs of size o10,000 nt. In light of these results, SNP
array-based DSV calls were considered to lack sufficient sensitivity
or precision for refinement of GS and BD DSV performance.
We generated four replicate WGS data sets from NA12878,

obtained BD and GS DSV predictions for each, and created
Training and Test DSV data sets from the superset of BD and GS
DSV predictions from the four NA12878 WGS replicates (BD U GS).
DSV predictions in individual experimental replicates varied from
4,641 to 22,080, partly reflecting differences in sequencing
instrument and read length. The reference set comprised the
superset of the Mills et al., Layer et al. and Zook et al. DSV calls.
Any NA12878 replicate DSV prediction which had a reciprocal
overlap in chromosomal coordinates with a reference DSV of
o50% was considered TP. DSV predictions not meeting this
criterion were considered FP (Figure 2b).
Of the three classification algorithms examined, the random

forest method had the best analytic performance, when trained

with classified DSVs from all four NA12878 WGS replicates and
tested on all four NA12878 technical replicates. On average, the
random forest classifier improved precision (PPV, TP/(TP+FP)) from
0.35 to 0.78, while decreasing recall (sensitivity, TP rate, TP/(TP
+FN)) from 0.32 to 0.27. Thus, on average, the random forest
classifier improved the F2 measure (from 0.32 to 0.52, Table 3).

Analysis of precision in replicate sets before and after filtering
The run-to-run precision of DSV predictions was assessed in two
samples (U173 and pg96), each with three WGS replicates (r1, r2
and r3). Despite material differences in the WGS methods used in
the replicates, 89.8% and 27.7% of DSV calls were common to at
least two of three replicates (U173 and pg96, respectively). Given
the methodological differences in WGS runs, we expected greater
similarity for r2∩ 50%r3 than for r3∩ 50%r1 or r2∩ 50%r1, which
matched actual results (Table 4). Application of the classification
tool decreased the number of DSV predictions by 2.8-fold and 4.1-
fold in U173 and pg96, respectively (Table 4). In contrast, it
decreased the r1∩ 50%r2∩ 50%r3 class by only 2.5-fold and 2.4-fold,
respectively (Table 4). Following filtering, 96.1% and 52.4% of calls
were common to at least two replicates, respectively.
The random forest classifier, and BD U GS DSV calls were

incorporated into a computational pipeline called SKALD
(Figure 3). SKALD included DSV attributes, such as size, zygosity
and degree of overlap between BD and GS predictions, and

Figure 1. Performance of five DSV detection tools as determined by reciprocal overlap of predictions from three iterations on one of three
WGS simulations. Shown are true positives (TP, a), false positives (b), false negatives (c), sensitivity (recall, d), positive predictive value
(precision, e) and F2 measure (f). ERDS did not yield any TP DSVs in this simulation. Similar results were observed for two other WGS
simulations (data not shown).
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annotations, such as exon content, repetitive element content,
OMIM disease association and population frequency. SKALD was
designed to run in parallel with nucleotide variant calling and
genotyping algorithms on test subjects with diseases of unknown
but likely genetic aetiology. Computation completed on most
WGS samples within 8 h.

Identification of disease-causative DSVs in WGS of acutely ill
neonates
The diagnostic utility of SKALD was examined in 36 families with
an acutely ill infant suspected of having a genetic disorder.9,10

Fourteen families were evaluated by WGS of singleton, affected
probands, 1 family comprised WGS of a mother–infant proband
duo, 20 families were parent–infant trios and 1 family was
analysed by WGS of a quartet (2 affected infants and both
parents). One sample from an unrelated, unaffected individual
(NA12878) was used as the control in trio and quartet
comparisons. Sample descriptions and WGS run quality metrics
are available in Supplementary Tables S2 and S3. Human genome
GRCh37.p5 was used as the reference version for alignments and
simulations. For most samples, WGS was with 2 × 100 nt reads,

with a fragment size of 200–400 nt, and mean read depth was
34.8+6.0-fold coverage. Five DSVs, detected by SKALD in five
probands, were chosen at random and assessed for validity in the
respective trios by quantitative PCR (qPCR; Supplementary Table
S7). Thirteen of 15 DSVs were TPs, yielding a PPV of 87%. DSVs
which overlapped genes considered to be causative for undiag-
nosed probands were identified by SKALD in 2 of 36 families,
yielding an incremental diagnostic rate of 6%.

Case 1—two siblings with heterotaxy
CMH184 was a 6-week-old male with visceral heterotaxy and
congenital heart disease (dextro-transposition of the great arteries
with total anomalous pulmonary venous return) enroled from
the Children’s Mercy hospital (CMH) NICU. A 6-year-old brother
(CMH185) had nearly identical findings. Parents (mother CMH186
and father CMH202) and two other siblings (one male and one
female) were healthy. Among 8,050 and 7,280 DSVs identified by
SKALD in CMH184 and CMH185, respectively, was a 5,904 bp
heterozygous DSV of MMP21 exons 1–3 (chr10:127460915–
127466819), that was present in CMH184, CMH185 and the
unaffected mother CMH186 (Supplementary Tables S4 and S5).

Figure 2. Development of a DSV prediction classifier with reference data. (a) Concordance of confirmed DSVs among three published
NA12878 reference DSV sets (Mills et al.,40 Layer et al.41and Zook et al.42). DSVs were considered concordant if their chromosomal coordinates
had a reciprocal overlap of at least 50%. About 33% of DSV calls were common to all three sets; 49% were common to more than two sets.
Rates of concordance were lower if the overlap requirement was increased. (b) Process employed to develop a DSV prediction classifier.
FN, false negative; FP, false positive; TP, true positive. Numbers shown represent a 50% reciprocal intersection between the union of DSVs from
Mills et al.,13 Layer et al.41 and Zook et al.,42 and the union of GS and BD calls for NA12878 technical replicates. TPs were defined as calls which
had a ⩾ 50% reciprocal overlap between Mills U Layer U Zook and GS U BD. FNs were defined as Mills_Layer_Zook DSVs that were not found
to have a ⩾ 50% reciprocal overlap with GS U BD calls. FPs were defined as GS U BD calls not found to have a 50% reciprocal overlap with
Mills_Layer_Zook DSVs.

Table 3. Performance of the random forest classifier on NA12878 replicates

NA12878 WGS replicate True positives False positives False negatives Precision Recall F2 measure

1, BD U GS unfiltered 1,780 2,861 7,958 0.38 0.18 0.31
1, Random forest filtered 1,262 292 8,635 0.81 0.13 0.39
2, BD U GS unfiltered 2,409 4,212 7,525 0.36 0.24 0.33
2, Random forest filtered 1,743 405 8,133 0.81 0.18 0.47
3, BD U GS unfiltered 3,808 18,272 4,553 0.17 0.46 0.20
3, Random forest filtered 3,198 2,867 5,161 0.53 0.38 0.49
4, BD U GS unfiltered 3,521 3,852 5,452 0.48 0.39 0.46
4, Random forest filtered 3,400 67 5,535 0.98 0.38 0.75
Average, BD U GS unfiltered 2,880 7,299 6,372 0.35 0.32 0.32
Average, filtered 2,401 908 6,866 0.78 0.27 0.52

Abbreviations: BD, breakdancer; GS, GenomeStrip; WGS, whole-genome sequence.
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The nucleotide variant calling pipeline identified an apparently
homozygous single nucleotide deletion that induced a frameshift
in MMP21 for CMH184, CMH185 and the unaffected father
(CMH202) (c.365del (p.Met122SerfsTer55); Supplementary
Figure S5). Familial relationships were confirmed by segregation
analysis of private variants, suggesting a deletion of the maternal
allele. The MMP21 frame-shift variant was confirmed by Sanger
sequencing in CMH184, CMH185 and CMH202, and absent in the
unaffected mother CMH186. The MMP21 heterozygous large
deletion encompassing exon 1–3, was validated by SNP micro-
array analysis in the affected proband, and breakpoints were
identified by long-range PCR and Sanger sequencing in the trio.
The proband and his brother are now 3 and 9 years old,
respectively, and in relatively good health following corrective
cardiac surgeries. MMP21 encodes matrix metalloproteinase 21,
which is involved in breakdown of the extracellular matrix during
embryonic development.43 Zebrafish and mice lacking MMP21
exhibit heterotaxy and transposition of the great arteries,44 similar
to that observed in CMH184 and 185.

Case 2—a newborn with dysmorphic features and cardiac defects
CMH773 was a 6-day-old full-term newborn female with
dysmorphic features, a ventricular septal defect and persistent
pulmonary hypertension. Parents CMH774 and CMH775 were
unaffected. The pregnancy was complicated by IUGR and
polyhydramnios, although Apgar scores at birth were good (8 at
1 min, and 9 at 5 min). The proband was at the 8th percentile
for weight, 35th percentile for length and 27th percentile for
occipito-frontal circumference. She had a prominent forehead,
redundant nuchal folds, low and wide spaced hypoplastic nipples,
high arched palate, a low set thumb and a prominent nasal bridge.
She had a spontaneous pneumothorax and was ventilator
dependent. FISH analysis for Turner syndrome and Trisomy 21
were negative. A 12 gene next generation sequence analysis for
Noonan syndrome was negative. A 13.6 Mb heterozygous Chr
1p36.32p36.13 DSV, consistent with proximal 1p36 deletion
syndrome,45–47 was found by SNP microarray and confirmed by
FISH (chr1:4,848,728–18,503,068del). Among 7,855 DSVs, SKALD
retrospectively identified the same mutation (Supplementary
Table S6). This DSV was associated with monosomy for at least
170 genes. Chr 1p36 microdeletion syndrome is associated with
two distinct syndromes: classic distal 1p36 monosomy syndrome
features a DSV of the distal terminal 6 Mb.48 Proximal 1p36

deletion has variable size and clinical features, including poor
prenatal and postnatal growth, seizures, developmental delay,
hirsutism, cardiovascular malformations, microcephaly, limb
anomalies and craniofacial dysmorphology, including frontal and
parietal bossing.45–49 The distal breakpoint in proximal 1p36
deletions can overlap with the classic 1p36 deletion, while the
proximal breakpoint can extend to 1p36.1. A 16 Mb 1p36 DSV that
covered both the distal and proximal deletions was reported in an
infant who died neonatally.49 Chromosome analysis of the trio
showed the 1p36.32p36.13 deletion to be de novo in CMH773
(Supplementary Figure S6). During WGS and microarray analysis,
the infant’s condition deteriorated. Her parents elected palliative
care, and she expired on day of life 10. SKALD was retrospectively
applied to this case and identified the same DSV. The clinical
microarray took 21 days to return results. If SKALD had been
available at the time of enrolment, the mutation may have been
identified 10 days earlier, potentially prior to her death.

DISCUSSION
If outcomes are to be improved for acutely ill neonates suspected
of having a genetic disorder, it is crucial to confirm or refute a
molecular diagnosis in a timely manner. The potential of WGS to
inform healthcare providers in this regard has not yet been fully
realized. In particular, comprehensive, clinical SV identification
methods for paired short-read WGS are needed. This is particularly
true for exonic DSVs for which likely pathogenicity and causality
for clinical features in affected patients can often be readily
ascertained. The challenge of DSV identification with paired, short-
read WGS is more analytical than technical.15 While many DSV
detection tools have been developed, the absence of robust truth
sets or benchmarking studies has been a significant impediment
to progress. Thus, there is not yet a default ‘gold standard’
commonly employed programme, as currently exists for WGS
nucleotide variant detection (i.e., GATK50). Herein we report results
of benchmarking studies of 10 DSV detection tools, using WGS
DSV simulation sets with certain characteristics based on a
validated set of CNVs from 185 of the 1,000 genome samples.
Analyses of analytical performance of available SV detection tools
in simulation sets led to the nomination of BD and GS as best.
BD and GS had reasonable analytic sensitivity (recall, 85% and 88%
at 87% overlap of predicted and reference DSV coordinates,
respectively) and specificity (PPV, 93% and 92%, respectively) in a
WGS DSV simulation set. Performance, however, degraded rapidly
if the required overlap between predicted and reference DSV
coordinates was 487%. Thus, these tools do not typically yield
start and stop coordinates with nucleotide precision. Furthermore,
since, the simulation set did not reproduce all of the types of noise
or imprecision encountered in experimental WGS data, we sought
to combine the methods to achieve more robust performance.
The best combination of the BD and GS methods was

empirically determined to be the union of all BD and GS DSV
calls (BD U GS), followed by filtering with a random forest-based
classifier. The classifier was trained with three sets of validated
DSVs from the reference sample NA12878, and four NA12878
paired, short-read experimental WGS replicates. The resultant
precision (PPV) was 78%, recall (sensitivity) was 27% and the F2
score was 52%. While these values were less than those achieved
by nucleotide variant calling tools in WGS, it should be noted that
only 33% of DSV calls in the three validated DSV sets used for
training were common to all three. Thus, considerable further
work will be needed before there exists comprehensive, validated
sets of SVs for reference samples with which to undertake
additional training. The hybrid BD U GS and classification method
was incorporated into a computational pipeline, together with
annotation tools to facilitate interpretation with regard to likely
pathogenicity for genetic diseases. This resultant pipeline was
called SKALD.

Table 4. Overlap in BD and GS DSV predictions in three sets of WGS
and samples U173 and pg96, showing that filtering increased the
r1∩ 50%r2∩ 50%r3 proportion

Replicates calling DSV Number of BD U GS DSV

U173 U173
filtered

pg96 pg96
filtered

Run 1 10,139 1,384 6,340 1,298
Run 2 11,335 1,542 24,033 2,459
Run 3 6,813 988 2,581 1,587
r1∩ 50%r2a 12,433 537 2,664 1,674
r2∩ 50%r3 444 341 784 193
r1∩ 50%r3 1,097 1,154 925 544
r1∩ 50%r2∩ 50%r3 237,733 94,335 8,259 3,468
Total DSV calls 279,994 100,281 45,586 11,223
r1∩ 50%r2∩ 50%r3 as % of
total

85% 94% 18% 31%

Abbreviations: BD, breakdancer; DSV, deletion structural variant;
GS, GenomeStrip; WGS, whole-genome sequence.
ar1∩ 50%r2: DSVs called by BD and GS in run 1 and run 2 with 450%
overlap in chromosomal coordinates.
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For diagnosis in acutely ill neonates, time to result is another
key parameter that has not hitherto been benchmarked for DSV
detection tools. For routine clinical use, DSV detection should be
performed in parallel with nucleotide variant calling, with a similar
time to result. Ideally, resultant nucleotide vcf and DSV call files
would be amalgamated, annotated and analysed together. SKALD
currently has a turnaround time of o8 h per WGS data set.
The approach whereby SKALD was used to aid in diagnosis of

DSV-associated disorders in newborns herein primarily utilised
familial trio WGS. SKALD DSV calls in the proband underwent a set
of filtering steps: First, DSVs that did not contain genes or only

containing commonly deleted genes were removed.51 The latter
was a powerful filter, since rare, highly penetrant genetic diseases
cannot be causally associated with common DSVs.8 Second,
SKALD DSV calls were filtered to retain genes causing known
genetic diseases that shared clinical features with the proband’s
specific phenotype8 (Figure 3). This was also a powerful filter,
given the availability of tools such as Phenomizer and SSAGA to
nominate disease genes comprehensively on the basis of clinical
features. Phenomizer contains both Orphanet and OMIM disease
entries, and thus has good representation of contiguous gene
deletion syndromes, as well as single gene disorders. However,

Figure 3. A flow diagram of the SKALD pipeline and downstream analysis for detection of likely disease-causative DSVs in WGS. After reads
were aligned, GS and BD were executed concurrently on bam files from parent–child trios. Filter attributes, overlap % and annotations were
obtained for each BD U GS DSV prediction. Since genes that were commonly deleted were unlikely to be deleterious, the population
frequency of DSVs overlapping genes helped determine whether the DSV was likely to cause a rare genetic disease. Finally to identify likely
pathogenic compound heterozygote states, any SNVs or indels overlapping a DSV were included as part of the SKALD output in the form of a
tab separated text file.
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this filter had less utility when the proband’s disease features
were atypical, reflective of an early phase in disease evolution,
represented more than one condition or if the patient had a
novel genetic disease. The combination of allele frequency and
phenotypic filters allowed for greater tolerance of non-specificity,
which, in turn, allowed greater analytic sensitivity. These filters
also greatly accelerated analysis time. Third, parental WGS were
inspected to determine whether the candidate DSV fit a
recognised inheritance pattern. Finally, for recessive conditions
with a heterozygous candidate DSV, the filtered SKALD DSV calls
were combined with rare, potentially pathogenic nucleotide
variants in the proband to identify heterozygous nucleotide
variants in trans.
While analytic performance was imperfect, SKALD nevertheless

had diagnostic utility among 36 families with acutely ill infant
probands with likely genetic diseases. SKALD identified or
confirmed two genetic diagnoses: In the first family, with
MMP21-associated heterotaxy, a diagnosis would not have been
made without the dual use of SKALD and a nucleotide variant
detection pipeline. The affected siblings had compound hetero-
zygosity for a pathogenic nucleotide variant and a small (5,904 nt),
exon-deleting DSV. This family was also remarkable since MMP21
had not previously been associated with heterotaxy in human. In
the remaining infants, SKALD recapitulated the diagnosis of a
large DSV that was made by cytogenetic analysis and SNP array.
SKALD was retrospectively applied in this case, but had it been
performed in parallel with nucleotide variant analysis the
diagnosis may have been made sooner. These cases clearly
indicate the potential utility of DSV detection as part of WGS for
diagnosis of genetic diseases.
In light of this experience, it is interesting to consider what

near-term role SKALD might play in the diagnostic work-up of
likely genetic diseases. First, trio WGS is expensive, and the only
current application where it is likely to be cost-effective is for
diagnosis in acutely ill patients in whom a genetic disease is
likely. In such patients, the primary subjects of analysis and
interpretation are nucleotide variants. In this situation, DSVs
constitute a second set of potentially primary findings that can be
obtained at small incremental cost. The latter includes cost of
interpretation and confirmatory assays—either PCR with Sanger
sequencing of breakpoints or SNP/CNV array support—prior to
reporting of results. Thus, SKALD and nucleotide variant calling
have unique potential to diagnose genetic conditions with causal
compound heterozygous nucleotide variants and DSVs which
hitherto were underdiagnosed. Clearly the breadth of use of WGS
in genomic medicine, and thereby SKALD, will increase as cost
effectiveness starts to be demonstrated.
It is also interesting to speculate what the near-term role of

SKALD might be relative to ‘gold standard’ clinical testing for
DSVs, which include array comparative genetic hybridisation, high
resolution cytogenetic analysis, FISH, SNP/CNV arrays and exon
arrays. Clearly SKALD is not sufficiently mature to be used as a
stand-alone diagnostic test, even if clinically validated and
performed in a CLIA/CAP compliant manner. However, SKALD
has two relatively unique capabilities: First, it can detect
small DSVs (hundreds to thousands of nucleotides) relatively
comprehensively, while detection of a SV by array is dependent on
probe density and placement. Second, SKALD can identify DSV
breakpoints with higher precision than array at the nucleotide
level, which could be important if the array has insufficient
resolution to determine whether a structural variation affects a
critical gene. In short, SKALD and array for DSVs appear to be
highly complementary.
There are several limitations to the current study and tool. First,

there exists considerable community need for comprehensive,
validated sets of SVs in widely available reference genomes. While
several recent manuscripts have described validated DSV calls for
sample NA12878; the lack of concordance between these sets

indicates that they remain inadequate for assessments of analytic
performance. Without such, further training of classification tools
is limited. Related to this is the need for large databases that
provide population frequencies for DSVs in various ethnic groups,
which will improve the performance of filtering common DSVs.
Second, SKALD, as described herein, did not fully harness the
power of SRM. This reflected the read alignment parameterisation
and relatively short (100 nt) reads used herein. Optimisation of
read alignment that is permissive to SRM and use of longer reads
—such as 250 nt—are likely to improve the performance of the GS
component of SKALD significantly. Finally, SKALD is currently
limited to DSVs. Clearly the addition of copy number gains would
be desirable for broadest utility.
In summary, the identification of DSVs by SKALD, when

combined with nucleotide variant detection in WGS, appears to
be effective for identifying genetic diseases in neonates. Having
tested SKALD in a limited set of cases, we next propose to
implement it in the larger Precision Perinatology 1 study (PrePer1,
clinicaltrials.gov). PrePer1 is a randomized, prospective study of the
clinical utility and cost effectiveness of rapid whole-genome
sequencing for genetic disease diagnosis and implementation of
precision neonatology in a broader group of neonates in a level IV
NICU setting. In this context it will be of great interest to quantify
the incremental diagnostic yield of SKALD beyond that of
nucleotide variants in WGS and conventional clinical tests for
pathogenic SVs.

MATERIALS AND METHODS
Study participants
This study was approved by the Institutional Review Board of CMH.
Informed written consent was obtained from adult subjects and parents of
living children. DNA samples from 70 subjects were analysed. They were
HapMap subject NA12878, obtained from the Coriell Institute for Medical
Research, NJ, 2 CMH quality control samples, Pg96 and U173, and 36
families with an acutely ill infant suspected of having a genetic disorder
who were enroled from the level IV NICU at CMH between November 2011
and October 2014.8–10 Fourteen families were evaluated by WGS of
singleton, affected probands, 1 family comprised WGS of a mother–infant
proband duo, 20 families were parent–infant trios and 1 family was
analysed by WGS of a quartet (2 affected infants and both parents).

Ascertainment of clinical features
The clinical features of NICU infants were ascertained comprehensively by
physician and family interviews and review of the medical record. Baseline
demographics including age, gender, gestational age, birth weight, APGAR
scores and family history were collected. Phenotypic features were
translated into Human Phenotype Ontology (HPO) terms and mapped to
~ 4,300 monogenic diseases with the clinicopathologic correlation tool
Phenomizer.9,10,52 The HPO is developed using the medical literature,
Orphanet, DECIPHER and OMIM. Briefly, Phenomizer assists in finding the
correct clinical diagnosis by exploiting the semantic structure of the HPO.
Phenomizer uses term-similarity measures to calculate a similarity score for
query HPO terms entered by the user and terms used to annotate diseases
in HPO. It then assigns a P value using statistical modelling to compare the
similarity score obtained for the specific set of phenotypic terms entered to
the distribution of similarity scores obtained using randomly chosen HPO
term combinations. The P value was then used to rank the diseases.

Whole-genome sequencing
Genomic DNA extraction from whole blood, library preparation,
sequencing and data analysis were performed using validated
protocols.9,10 Genomic DNA was prepared using Illumina TruSeq PCR Free
sample preparation (Ilumina Inc., San Diego, CA, USA). Quantitation was by
real-time PCR. Sequencing libraries had a fragment size of 200–400 nt.
For analysis of run-to-run precision of DSV predictions, WGS was

performed three times in two samples (U173 and pg96, replicates r1, r2
and r3). The replicates were generated during methods development for
clinical WGS, and utilised different Illumina sequencing instruments,
sequencing-by-synthesis (SBS) chemistry and read lengths. Sample U173
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WGS replicates were: r1. NextSeq500 instrument (Illumina) with 2 × 120 nt
reads and version 4 (v4) SBS chemistry, r2. HiSeq 2500 instrument
(Illumina) with 2 × 100 nt reads with v3 SBS chemistry and a 26 h recipe
(rapid run mode) and r3. HiSeq 2500 2 × 100 nt reads with v4 chemistry
and an 18 h recipe.34 Sample Pg96 WGS replicates were: r1. HiSeq 2500
2 × 250 nt reads, r2. HiSeq 2500 2 × 120 nt reads, 11 day protocol and v3
chemistry, and r3. HiSeq 2500 2 × 100 nt reads, v4 chemistry and 18 h
recipe.34 All other samples underwent WGS once by 2× 100 cycle SBS on
Illumina HiSeq 2500 instruments in 26 h rapid run mode. WGS was to a
minimum depth of 90 Gb per sample (Supplementary Tables S2 and S3), to
provide an average 34-fold genome coverage. Each sample met
established quality metrics.
Sequence data were generated with Illumina RTA 1.12.4.2 (Illumina) and

aligned to the human reference GRCh37.p5 using GSNAP.53 Sequence
analysis employed FASTQ files, the compressed binary version of the
Sequence Alignment/Map format (bam, a representation of nucleotide
sequence alignments). Analysis programmes were either written in Perl, R,
Make or the Linux bashshell scripting language.

Selection of DSV detection tools
The criteria for selection of DSV detection tools for evaluation from a total
set of 50 tools surveyed (Supplementary Table S1) were: (1) Set-up and
installation required only minimal if any third party tool or library
dependencies (e.g., proprietary alignment tool) and did not require root
access; (2) Execution was efficient and autonomous at the whole-genome
level (e.g., could be successfully completed in clinically acceptable
timeframe and did not require intermittent monitoring and restarting
due to recurrent calibration or errors); (3) Execution did not require a
control sample; (4) Supported the widely used .bam format; (5) Was still
supported by the tool developers (e.g., had been updated in the last year,
could receive response by e-mail from authors regarding questions);
(5) Could be run concurrently on multiple processors; (6) Detected at least
one Chr1 DSV, defined as 41 nt overlap in predicted coordinates, as part
of a simulation test.

WGS simulation data
For initial evaluation of the performance of SV detection tools, 270
homozygous DSVs of size 500–10,000 nt were created in a representation
of human chromosome (Chr) 1 with 40× coverage and 2× 100 nt paired
reads. Reads were simulated from this modified Chr 1 GRCh37.p5 sequence
file using wgsim 0.3.032 (with default parameters). Simulated reads
were aligned to the human reference GRCh37.p5 using GSNAP53 version
2012-07-12, and sam files were converted to the bam form using
samtools32 0.1.18. Overlaps of the genome coordinates of DSV predictions
and those present in the simulated set were determined by standard Linux
utilities and Bedtools 2.17.0.54 TP DSV calls were defined as DSV predictions
that overlapped a simulated DSV by 41 nt.
Currently, there is no comprehensive ‘gold standard’ set of known DSVs

for a reference WGS.55,56 The 1KGP has published a validated SV deletion
set from 2,504 human genomes.40,57 To evaluate DSV identification tools at
genome scale, three WGS samples with known deletions were simulated
with parameters derived from phase 2 1KGP analyses.40 DSVs were
simulated with random length (600–8,000 nt) and intra-chromosomal
placement, while being distributed proportionally to chromosomes by
their size at a rate of 1 per 400 Kb (~7,500 per sample). More recent phase
3 1KGP analyses demonstrated a slightly lower prevalence and median size
of deletions than used in simulation data with ~ 2,800 deletions per sample
having a median size of 2,455 nt for phase 3 1KGP published data
compared with ~ 7,500 deletions per sample and median deletion size of
3,800 nt for our simulation data. Previous WGS experience was used to
establish rates for SNPs (1 per Kb), small insertions and deletions (0.1 per
Kb), and nucleotide errors (20 per Kb). Library insert size was 400 nt, read
length was 2 × 100 nt and read depth was 40× . Read simulation,
alignment and bam file creation were as before. Differences between
WGS simulation and expected genome reference values for GC content,
repetitive feature frequency and target depth were o10%, similar to the
Chr 1 simulation (Supplementary Figure S1). Three independent WGS
samples were simulated to reduce any potential tool deletion position
advantages occurring by chance via random placement. To compare
sensitivity for homozygous and heterozygous DSVs, the simulated DSVs
were 98% heterozygous and 2% homozygous. A subset of DSVs was
visually inspected for each sample using IGV (Supplementary Figures S2
and S3).

DSV tools were evaluated in three simulated samples. Each sample
was evaluated three times to estimate precision. Tool predictions were
compared with simulated DSVs (depicted as set notation where
intersection is ∩ , no intersection is \ , and union is U) at six discrete
reciprocal overlap values (1 bp, 1, 25, 50, 90 and 99%) since, to our
knowledge, no standard SV coordinate overlap criteria yet exist.
Performance measures were TPs, FPs, false negatives (FNs), sensitivity
(SENS), PPV and the F2 measure. With an unknown quantity of true
negatives, the F2 measure substituted for specificity. TPs, FPs and FNs
were counted and SENS, PPV and F2 were calculated for each tool
(SENS= TP/(TP+FN); PPV= TP/(TP+FP); F2 = (1+β2) × (SENS×PPV)/(β2 × SENS
+PPV) where β= 2).

Confirmatory testing for DSVs
Confirmatory testing for DSVs included long-range PCR, qPCR and Sanger
sequencing of DSV breakpoints. For qPCR, DSV regions-of-interest were
tested along with a separate normal locus that is used as an internal
standard. Briefly, the ΔΔCt values were log converted and normalised to a
reference gene (OFD1). NA12753 was used as a reference sample. Results
from test samples were compared with the reference sample which
contained two copies of the tested locus.
For SNP array analysis, isolated genomic DNA was prepared using a

standard, eight-step Affymetrix Cytoscan assay (Thermo Fisher Scientific
Inc.) protocol. Arrays were washed, stained and scanned. Raw .cel and .dat
files were converted to .cychp files using Affymetrix CytoScan HD Array.
Chromosome Analysis Suite 2.0 NetAffx 32.3 (hg19) was used for data
analysis (Thermo Fisher Scientific Inc.) and export of DSV calls.

Analysis and Interpretation of nucleotide and DSVs
Nucleotide variants were detected and genotyped with the Genome Analysis
Toolkit (GATK) v. 1.4 or 1.631,50 and yielded an average of 4.9 million
nucleotide variants per sample (Supplementary Table S2). Variants were
annotated with RUNES, noncommercial CMH software (Children's Mercy
Hospital, Kansas City, MO, USA).8,34 WGS variant interpretations considered
multiple sources of evidence, including variant attributes, the gene involved,
inheritance pattern and clinical case history. Causative nucleotide variants
were identified primarily with VIKING software8,34 by limitation to American
College of Medical Genetics (ACMG) Categories 1–3 and allele frequency
o1% from an internal database.8–10,34 VIKING (CMH, Kansas City, MO, USA)
was used to display variants characterised by RUNES and, thereby, to
interpret WGS findings.8,34 VIKING allows input of patient clinical features to
sort variants by candidate gene and has additional dynamic filters, including
those for minor allele frequency, ACMG variant pathogenicity category,
compound heterozygosity and custom gene lists. VIKING enables custom
classification of variants, visualisation of read alignments with the IGV and
export of analysis findings. On average, genomes contained 825 potentially
pathogenic variants (allele frequency o1%, ACMG categories 1–3). All
inheritance patterns were examined. Where a single likely causative variant
for a recessive disorder was identified, the locus was manually inspected
using IGV in the trio for uncalled variants.58 Expert interpretation and
literature curation were performed for likely causative variants with regard to
evidence for pathogenicity.43 While rapid WGS can give a provisional
diagnosis of genetic disorders in 50 h,8 it is a research test, and Sanger
sequencing, qPCR, or long-range PCR were used for confirmation of all likely
causative genotypes. During the study, the FDA granted ‘non-significant risk’
status to verbal return of a provisional WGS diagnosis to the treating
physician in exceptional cases, where the results were actionable and the
infant was imminently likely to die (FDA/CDRH/OIR submission Q140271,
8 May 2014). Familial relationships were confirmed by segregation analysis
of private variants in WGS diagnoses associated with de novo mutations. An
infant was classified as having a definitive diagnosis if a pathogenic or likely
pathogenic genotype using ACMG criteria in a disease gene that overlapped
with a reported phenotype was reported in the medical record.52 Expert
consultation and functional confirmation were performed when the subject’s
phenotype differed from the expected phenotype for that disease gene or if
identification of novel disease gene.59–62
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