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Quasiparticle approach to diffusional atomic scale
self-assembly of complex structures: from disorder to
complex crystals and double-helix polymers
Mykola Lavrskyi1, Helena Zapolsky1 and Armen G Khachaturyan2,3

A self-organisation is an universal phenomenon in nature and, in particular, is highly important in materials systems. Our goal was
to develop a new theory that provides a computationally effective approach to this problem. In this paper a quasiparticle theory of
a diffusional self-organisation of atoms in continuum space during the diffusional time scale has been introduced. This became
possible due to two novelties, a concept of quasiparticles, fratons, used for a description of dynamic degrees of freedom and model
Hamiltonian taking into account a directionality, length and strength of interatomic bonds. To illustrate a predictive power and
achievable level of complexity of self-assembled structures, the challenging cases of self-assembling of the diamond, zinc-blende,
helix and double-helix structures, from a random atomic distribution, have been successfully modelled. This approach opens a way
to model a self-assembling of complex atomic and molecular structures in the atomic scale during diffusional time.
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INTRODUCTION
In the last 25 years, significant progress has been made by using
molecular dynamic (MD) and Monte Carlo (MC) modelling for
study of evolution of multi-atomic systems.1–4 These methods
supplement each other. The MD, is a straightforward approach of
to a numerical solution of equations of motions for 6N dynamic
variables where N is the number of atoms. However,
a sheer number of variable limits the size of studied systems
to N~ 105 and time of its evolution to t~ 10− 8 s. Recent
modifications of MD by coarse graining improve the addressable
time but at expense of the lost spatial resolution5,6. However, the
MD is still not well-suited to study slow evolving systems with the
typical diffusion time scale.
The MC alternative complements the MD since it can be

applicable to the diffusional time scale. The MC approximates the
mechanics of atomic motion by a stochastic dynamics of the
Markov chain evolution.3,4,7 A stochastic sampling in the MC
dynamics requires a generation of a Markov chain that takes a
significant time because it requires a search and update of
databases, time scale separation and one process-at-a time
execution.
Therefore, there are still significant difficulties of atomic scale

prototyping of a slow diffusional self-organisation of atoms in
complex structures. This is especially the case if the evolution is in
the continuum space, the system consists of comparatively large
number of atoms, and evolution time is long, ranging from a
fraction of seconds to years. In this paper, we propose such an
approach that may be supplemental to MD and MC that addresses
their aforementioned limitations of MD and MC in computation-
ally very effective way.
This development turned out to be possible because we

(i) introduced a characterisation of a multi-atomic system in terms

of quasiparticles named fratons, (ii) proposed a new simple
form of phenomenological model potentials describing a
directionality, length and strength of atom–atom bonding and
(iii) used the kinetic equations of the atomic density field (ADF)
theory describing the atomic scale diffusion. The latter was
obtained by extending the ADF theory that was first developed for
the Ising lattice gas model8,9 and for the Ising lattice sites
diffusion.10 Recently, the extension of the ADF theory to the
relevant case of atomic diffusion in the continuum space was
also done.11

To check how this theory works, we chose examples of
diffusional self-assembling of several atomic systems. Criteria for
these choices are the following:

(i) To estimate a predictive power of the theory, we should
choose the initial atomic configuration that has no any
resemblance to the expected self-assembled atomic
structure. This condition was satisfied by a choice of an
initial state described by a completely random distribution of
fratons in continuum space. The ‘condensation’ of fratons
into the desirable final atomic structure should be provided
solely by the input parameters of the model potentials, which
characterise the directional atomic bonding.

(ii) The model potentials should have sufficient flexibility to be
fitted not only to provide a desirable crystallography of a
system, but also to approximate its thermodynamic and
mechanic properties.

(iii) To make an illustration of potentiality of the approach
sufficiently convincing, we have to demonstrate that it
allows one to successfully simulate a self-assembly of
high-complexity structures.
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We did successfully model a self-assembly of a randomly
distributed atoms into complex atomic configurations of increas-
ing complexity. The structures are ranged from single-component
and multi-component crystals to single- and double-helix
polymers. As far as we know, a self-assembling of the most
complex of them that would started from the completely random
state, has been never modelled before.

Model
A central part of the proposed theory is an introduction of non-
traditional dynamic variables. Unlike the conventional approach
describing the configuration of a classic multi-atomic system by
coordinates of atomic centres, the proposed theory describes the
atomic configurations by occupation numbers, c(r), of quasipar-
ticles that we call fratons where c(r) is a stochastic function
describing two possible events: c(r) is equal to 1 if the point, r,
reside inside any atomic sphere and is equal to zero otherwise. In
other words, these two events indicate two possible states of each
point of the continuous space, r. In this description, the dynamics
of the system is described by a creation or annihilation of a fraton
at each point of the continuous system: a creation of a fraton at a
point, r, indicates that atomic movements resulted in a situation
wherein the point r, which was previously outside of any atomic
spheres, turned out inside of one of them; annihilation of a fraton
describes an opposite process wherein the point, r, which initially
is within of an atomic sphere, becomes outside of it.
We also introduced an analogue to the Pauli exclusion principle

assuming that two fratons cannot occupy the same point. This
exclusion automatically forbids interpenetration of the atoms and
thus provides a dynamic ‘exchange’ repulsion preventing the
atomic overlap. The introduction of fratons, in many respect, is
conceptually similar to a transition to the secondary quantisation
for multi-particle Fermi systems.12

A m-component system characterised in terms of fratons is
described by m stochastic numbers cα(r) at each site r where
α= 1,2,..m labels the fratons related to the corresponding atom of
the kind α. The averaging over the time-dependent Gibbs
ensemble gives the occupation probability, ρα(r, t) = ocα(r, t)
4T≤ 1, where the symbol o…4 implies averaging over the
ensemble at temperature, T, and time, t. In this definition, the
function ρα(r, t) is an occupation probability, that point, r, is at any
point inside of atomic sphere of any atom of the kind α at the
time t.
The temporal evolution of the density function of fratons of the

multi-component system is described by the atomic scale kinetic
equation of the ADF theory10 extended to the continuum space:

dραðr; tÞ
dt

¼
X
r0

Xβ¼m

β¼1

Lαβðr - r0Þ
kBT

δG
δρβðr0; tÞ

ð1Þ

where indices, α and β, label fratons describing different kinds of
atoms (α= 1, 2, ..., m), kB is the Boltzmann constant, G is the non-
equilibrium Gibbs free energy functional, Lαβ(r) is a kinetic
coefficients matrix. Summation is carried out over all points, r′
of the computational grid approximating the continuum space.
The kinetic parameters employed in our microscopic model are
related to the phenomenological diffusion coefficients in the
continuum model. It was shown previously9 that in the continuous
model (where k→ 0) the kinetic coefficients can be expressed as:
L(k) =−Mijkikj where M is a diffusional mobility. The conditionP

rLαβðrÞ ¼ 0 guarantees the conservation of the total number of
fratons of each kind during evolution (and thus the conservation
of the total volume of the corresponding atoms).

The simplest Gibbs free energy functional entering
equation (1) is:

G ¼ 1
2

X
r;r0

Xα¼m

α¼1

Xβ¼m

β¼1

wαβðr - r0ÞραðrÞρβðr0Þ

þ kBT
X
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ραðrÞ
 !"

ln 1 -
Xα¼m

α¼1

ραðrÞ
 !#

-
X
r

Xα¼m

α¼1

μαραðrÞ ð2Þ

where wαβ(r− r′) is the model potential of interaction of a pair of
fratons of the components α and β, respectively, separated by a
distance, r− r′, μα is the chemical potential of fratons of the kind α.
Summation over r and r′ in equation (2) is carried out over all N0

sites of the computational grid lattice introduced to discretise the
continuous space. The free energy (see equation (2)) corresponds
to the mean field approximation9. It is asymptotically accurate at
low and high temperatures, and its accuracy asymptotically
increases if the interaction radius is much greater than the
distance between interacting particles13. The latter condition is
automatically satisfied in our case because interacting particles are
fratons, and the computational grid increment, which is the
minimum permitted distance between fratons, is much smaller
than the atomic radius. The latter is also a requirement of accuracy
of a description of a continuous atomic movement. The
computational grid can be also interpreted as an Ising lattice
and a spacing of the grid as a crystal lattice parameter of this ‘Ising
lattice’.
Equation (2) uses the Connolly–Williams approximation14 that

maps the fraton–fraton interaction into the chosen model
potential, wαβ(r− r′). The Fourier transform (FT) of such a
potential is:

~wαβðkÞ ¼ 1
N0

X
r

wαβðrÞe - ikr ð3Þ

where the summation is carried out over all sites of the
computational grid, and the wave vector, k, is defined at all
quasi-continuum points, k, of the first Brillouin zone of the
computational grid, that is, at all N0 the points in the k-space
permitted by the periodical boundary conditions.
Structures that are really complex are usually formed in systems

with directional covalent bonds between atoms. Therefore a
theory whose goal is to study such systems by using the
phenomenological model Hamiltonian should formulate the
atom–atom interaction potentials, k, as directional functions of
atomic separation distance, r− r'. This function should describe
the directionality of these bonds, their length and strength. The
parameters of the potentials can be fitted to those calculated in
quantum chemistry, Density Function formalism and/or by fitting
to the observed crystallographic, mechanic and thermodynamic
properties of the system. To make modelling sufficiently efficient,
the approximation of the potentials should be as simple as
possible without sacrificing a predictive power of the model.
In this paper, such model potentials are proposed. We tested

their validity for the most challenging cases of self-assembling,
some of which are not being modelled before. A central idea of
the formulation of these potentials is based on the explicit use
of what we call a bonding star, a group of vectors with the
common beginning that describes directions and lengths of
interatomic bonds.
A structural cluster designated as αβ, is determined by a star of

vectors numbered by the index jαβ. The vectors, jαβ, have the same
origin, parallel to the corresponding bonds, jαβ, between the
atoms of the kinds α and β, and have the lengths of these bonds.
Therefore, the cluster, αβ, is characterised by a set of geometrical
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points determined by the ends of the vectors of the star and its
centre. The geometry of the stars, αβ, and the strength of the
bonds characterising the star describe interaction in the system
and should be the only factor determining the structure of a
self-assembled multi-atomic system.
These definitions allow us to introduce a cluster function,

Ψclstr
αβ ðrÞ whose FT is:

~Ψ
clstr
αβ ðkÞ ¼

X
jαβ

oðjαβ; kÞe - ikrjαβ ð4Þ

where summation is carried out over all vectors, rjαβ , of the αβ star
of the cluster, ω(jαβ, k) is a function characterising a strength of the
bond jαβ. The coefficients, ω(jαβ, k) determine the thermodynamic
and mechanical properties of the simulated system and can be
used as fitting parameters to reproduce them.
Using these definitions, we present the FT of the model

potential as sum of what we call the short-range and long-range
interactions:

~wαβðkÞ ¼ λ1~yαðkÞδαβ þ λ2ðkÞΨcltr
αβ ðkÞ Ψcltr

αβ ðkÞ� ð5Þ
The first term in equation (5) describes the spherically symmetrical
short-range fraton–fraton pair interaction. The function θα(r) is
schematically presented in Figure 1a, where r1 is a length
parameter determining atomic radius, Δr is the width of repulsion
part, ξ ¼ ymaxðrÞj j

yminðrÞj j is the ratio between the modules of minimum and
maximum values of the shape function and λ1 is a constant
determining the strength of the short-range atomic repulsion. In
particular, the parameter λ1 characterises the rigidity of the atomic
spheres and its value can be determined by a fitting of the elastic
properties of a given system. The FT of the function, ~yαðkÞ,
schematically shown in Figure 1b is:

~yαðkÞ ¼ 4π
k3
ð - sin ðkr1Þ - kr1 cos ðkr1ÞÞ þ ξð sin ðkðr1 þ ΔrÞÞ

- kðr1 þ ΔrÞ cos ðkðr1 þ ΔrÞ - sin ðkr1Þ þ kr1 cos ðkr1ÞÞÞ ð6Þ
The second term of equation (5) is the long-range part of the
fraton–fraton interaction describing a directional bonding of
atoms of the kind α and β.
In fact, the long-range interaction in equation (5) is presented as

a bilinear expansion in cluster functions, Ψclstr
αβ ðkÞ, λ2(k) is a fitting

parameter determining a strength of the long-range interaction.
The indexes, α and β can be dropped for a single-component

system. Then equation (5) is simplified to:

~wðkÞ ¼ λ1~yðkÞ þ λ2ðkÞ ΨclstrðkÞ�� ��2 ð7Þ
In this paper we consider a particular case of application of the
fratonic theory allowing to obtain a single crystalline state. This is a
case of specifically oriented clusters. The constraint lifts the
angular isotropy of the system and thus allows us to prevent the
formation of a ‘polycrystalline state’ that is an atomic aggregate of
grains with the same atomic structure but different orientation.

A self-assembling producing such a ‘polycrystal’ would make it
difficult to identify the equilibrium atomic structure. However, in
the general case, in which the angular isotropy is not lifted,
the potential described by equation (7) describes a growth of
polycrystal (see Supplementary Figure 1S in Supplementary
Information). In this case the interaction energy of a pair of
fratons is independent from its orientation. It can be achieved
using a rotational averaging of a cluster function Ψclstr

αβ ðkÞ.

RESULTS
To illustrate the versatility and effectiveness of the fraton theory,
we tested its application to the modelling of the self-assembly of
three groups of three-dimensional structures of increasing
complexity. They are single-component crystals, two-component
crystals and a polymer with a double-helix structure mimicking
biological macromolecules. The modelling was carried out
by numerical solution of the FT representation of the kinetic
equation (1).
In our simulations, we used the reduced parameters, and, in

particular, average density, defined as ρ̂α ¼ ρatα
4πR3α
3 where ρatα ¼ Nα

V
is the density of α atoms in the ground state, Nα is number of the
atoms of sort α, V is the total volume of the system and Rα is the
atomic radius of this atom. According to this definition, the
reduced density, ρ̂α, is also a fraction of all computational grid
sites occupied by fratons of the kind α. The input parameter ξ of
the energy θα(r) is measured in units of kBTo, where To is the
solidification temperature. The lengths are measured in units of r1,
which is very close to the atomic radius; the grid lattice increment,
l̂ (the spacing of the underlying Ising lattice), is defined as a
fraction of the atomic radius. The temperature T̂ is also measured
in units of To. The reduced time, t̂, is measured in units of typical
atomic migration time, τo. The reduced kinetic coefficients, L̂ðrÞ,
are measured in units of τ - 10 and ~LðkÞ ¼ Dk2, where D is a
constant. The numerical solution of the reduced form of kinetic
equation (1) was obtained by using the semi-implicit Fourier-
spectral method15. The number of computational grid sites in the
simulation box was chosen in compromise between a necessity to
reasonably reproduce the atomic structure and to optimise the
simulation time. A time step of Δt= 0.01 was used. The periodic
boundary condition was imposed for all simulations. The first
example that we will consider in this article is the self-assembly
of a single-component crystal with several atoms in a Bravais
lattice unit cell. As an example, we tested whether the model
Hamiltonian describing tetrahedral orientation of the interatomic
bonds results in a self-assembling producing the diamond
structure. An image of the structural cluster in this case is
convenient to choose as a star of eight bonding vectors whose
ends are located at the sites of a cubic unit cell of the diamond
lattice: (000), 0 1
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Figure 1. (a) Schematic representation of short-range potential θ(r). (b) Example of FT of θ(r) with the following input parameters: ξ= 4,
Δr̂ ¼ 0:25.
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The function Ψcltr(k) was constructed by using its definition
(equation (4)) and the coordinates of the chosen structural cluster
points:

ΨcltrðkÞ ¼ 1þ e - ia4 kxþkyþkzð Þ� �
1þ e - ia2 kxþkyð Þ þ e - ia2 kyþkzð Þ�

þe - ia2 kxþkzð Þ
�

ð8Þ

where a is a lattice constant of diamond structure, ki ¼ 2πmi
aN (where

i= x,y or z, mi= 1…N, N is the number of simulation grid in a given
direction). With this definition, the FT of the long-range
interaction, ~w LRðkÞ, can be written as:

~w LRðkÞ ¼ λ2ðkÞ~ΩDðkÞ ð9Þ
where

~ΩD kð Þ ¼ ΨcltrðkÞ ΨcltrðkÞ� ��
¼ 2þ 2 cos

a
4
kx þ ky þ kz
� �� �� �

´ 4þ 4 cos
kxa
2

� ���

cos
kya
2

� �
þ cos

kya
2

� �
cos

kza
2

� �
þ cos

kxa
2

� �

cos
kza
2

� ���
ð10Þ

To choose for the model potential the form of λ(k), we used
the following consideration. The function |Ψ(k)|2 by definition
(see equation (10)) is periodical in k-space. Its longest period is
along the [111] direction and equal to k1 ¼ 8π

a . We assume that the
function, λ2(k), is a step function. It is defined as:

λ2 kð Þ ¼ λ2 if 0� kx þ ky þ kz
� ��8π

a þ δ
0 otherwise

	
ð11Þ

where δ is a positive constant.
Then the FT of the model potential can be written as:

~wðkÞ ¼ λ1~yðkÞ þ λ2ðkÞ~ΩDðkÞ ð12Þ
where the first term describes the short-range interaction. The
energy parameters λ1 and λ2 were normalised by the absolute
value of a difference between the maximum and minima values of
the function ~ΩDðkÞ and ~yðkÞ, respectively.
In this simulation, the initial configuration was an embryo

consisting of the small variation of the fratons density at the sites
of the structural cluster of diamond structure embedded in the
gas of disordered fratons (Figure 2a). However, the initial state can
be also chosen as local random ‘infinitesimals’ statics fluctuations
with respect to homogeneous state. The spontaneous self-
organisation of fratons into the diamond structure is shown in
Figure 2. The intermediate step in the pattern formation dynamics
at the reduced time t= 60,000 is shown in Figure 2b. A very
interesting aspect of this growth is the development of the
transient bcc structure (Figure 2c) in the early stages of growth.
Its lattice parameter approximately is half that of the diamond
structure.
A probability of occupation of each sites of the obtained

transient bcc lattice is less than unity. The latter indicates that the
bcc lattice sites, in fact, are randomly occupied by atoms and their
vacancies and form the disordered distribution in the bcc lattice.
This result is fully consistent with the thermodynamics dictating a
mandatory presence of a disordered distribution of vacancies in
the bcc (or any other) lattice at finite temperature, and thus
dictating the greater number of lattice sites than the number of
occupying them atoms. It should be also noted that the total
number of atoms in our simulation is automatically conserved
because the kinetic equation (or more specifically, a choice of
matrix of kinetic coefficients) guarantees the atomic conservation.
The formation of the diamond lattice, in fact, is a fratonic

theory description of the bcc→ B32 (NaTl-type) ordering of atoms

and their vacancies over the preferential sites of the previously
‘condensed’ bcc host lattice. A result of such an ordering is a
doubling of the crystal lattice parameters of the underlying bcc
lattice. It should be also mentioned that a possibility of the
crystallisation of the diamond structure through the transient bcc
structure is a result that could hardly be predicted in advance for a
system with tetrahedral atomic bonding.
To better visualise the final structure, presented in Figure 2e, the

links between the first neighbours are shown. The growth
dynamic of the diamond structure is shown in Supplementary
Movie 1 (see Supplementary Information). To better characterise
the different steps of the growth dynamic, the diffraction patterns
at different time steps have been calculated. The diffraction
pattern, which is a distribution of intensity of scattered radiation in
the three-dimensional reciprocal space of the wave vectors,
k= (kx, ky, kz), was determined as the squared modulus of the
FT of the density function. The strongest diffraction peaks that
characterise the diamond structure are: (220), (111), (311) and
(400). The peaks {200}, which are forbidden for the diamond
lattice, are present in the diffraction pattern of the bcc structure.
Then, following these peaks it is possible to distinguish the
different stage of the growth dynamic. The evolution of the
diffraction pattern during the growth dynamic of the diamond
structure is shown in Supplementary Movie 2 (see Supplementary
Information).
Continuing a gradual increase in the complexity of the

modelled structure, we also considered the formation of a two-
component crystalline phase in a system with tetrahedral
direction of bonds expecting the formation of the zinc-blende
structure. A two-component systems atomic arrangement is
formed by a ‘condensation’ of two kinds of fratons, belonging
to type A and B. This condensation should produce atoms A and B,
respectively. The spontaneous arrangement caused by an
equilibration of a disordered distribution of one sort of fratons is
described by the kinetic equation (1). For a two-component
system, equation (1) is reduced to two equations for two fraton
densities ρA(r) and ρB(r). Thus in the reciprocal space these
equations can be written as:

∂~ρAðk; tÞ
∂t

¼ LAAðkÞ
�
~wAAðkÞ~ρAðk; tÞ þ ~wABðkÞ~ρBðk; tÞ

þ ln
ρAðr0; tÞ

1 - ρAðr0; tÞ - ρBðr0; tÞ
� �

k

�
þLABðkÞ ~wBBðkÞ~ρBðk; tÞ þ ~wABðkÞ~ρAðk; tÞð
þ ln

ρBðr0; tÞ
1 - ρAðr0; tÞ - ρBðr0; tÞ

� �
k

�
ð13aÞ

∂~ρBðk; tÞ
∂t

¼ LBBðkÞ
�
~wBBðkÞ~ρBðk; tÞ þ ~wABðkÞ~ρAðk; tÞ

þ ln
ρBðr0; tÞ

1 - ρAðr0; tÞ - ρBðr0; tÞ
� �

k

�
þLABðkÞ ~wAAðkÞ~ρAðk; tÞ þ ~wABðkÞ~ρBðk; tÞð
þ ln

ρAðr0; tÞ
1 - ρAðr0; tÞ - ρBðr0; tÞ

� �
k

�
ð13bÞ

where A and B designate two sorts of fratons.
The FTs of the interaction energies, ~wαβðkÞ, determined by

equation (5), are:

~wAAðkÞ ¼ λ1A~yAðkÞ þ λ2AðkÞ~ΩAA
ZBðkÞ ð14aÞ

~wBBðkÞ ¼ λ1B~yBðkÞ þ λ2BðkÞ~ΩBB
ZBðkÞ ð14bÞ

~wABðkÞ ¼ λ2ABðkÞ~ΩAB
ZBðkÞ ð14cÞ

where ~Ω
αβ

ZBðkÞ ¼ ΨαðkÞΨ�
βðkÞ
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The zinc-blende structure has two atoms, A and B in a primitive
unit cell of the fcc Bravais lattice with positions (000) and 1

4
1
4
1
4

� �
,

correspondingly. To describe the model Hamiltonian providing
evolution to this structure, we needed two structural clusters,
which is, the clusters of type A and B. The cluster A consists of four
points: the point (000) and its nearest neighbours in the fcc lattice,

a 1
2
1
2 0

� �
, a 0 1

2
1
2

� �
, a 1

2 0
1
2

� �
. The cluster B also consists of four point.

They are obtained from the four points of the cluster A by the
shift, a 1

4
1
4
1
4


 �
. With this definition, the Ψ-functions for the two

structural clusters are:

Ψcltr
A ðkÞ ¼ 1þ e - ia2 kxþkyð Þ þ e - ia2 kyþkzð Þ þ e - ia2 kxþkzð Þ

� �
ð15aÞ

Figure 2. Example of a self-assembly of fratons into diamond structure at reduced times t̂ of (a) t̂ ¼ 0, (b) t̂ ¼ 60;000, (c) t̂ ¼ 100;000,
(d) t̂ ¼ 280;000 and (e) t̂ ¼ 300;000. The parameters in these simulations are λ̂1 ¼ 14:085, λ̂2 ¼ - 7:042, â ¼ 4:57, ξ=2, D̂ ¼ 1, ρ̂ ¼ 0:07, l̂ ¼ 0:286,
Δr̂ ¼ 0:17 and T̂ ¼ 0:732. The initial configuration is the atomic cluster of the diamond structure placed in the centre of the simulation box. The
size of the simulation box is 64 × 64 × 64.

Figure 3. Example of a self-assembly of fratons into zinc-blende structure at reduced times t̂ of (a) t̂ ¼ 0, (b) t̂ ¼ 160;000, (c) t̂ ¼ 190;000,
(d) t̂ ¼ 280;000 and (e) t̂ ¼ 3;000;000. The parameters in this simulation are ξ=2, D̂AA ¼ D̂BB ¼ 1, D̂AB ¼ - 0:5, λ̂1A ¼ 3:77, λ̂2A ¼ - 1:88,
λ̂1B ¼ 5:84, λ̂2B ¼ - 2:92, λ̂2AB ¼ - 2:26, l̂ ¼ 0:25, r1A= 1.143 r1B, Δr̂ ¼ 0:17, â ¼ 4:0, ρ̂A ¼ 0:07, ρ̂B ¼ 0:045 and T̂ ¼ 0:235. The initial configuration
is the atomic cluster of a diamond structure placed in the centre of the simulation box. The size of the simulation box is 64 × 64× 64. Two sorts of
atoms with different atomic sizes are indicated in red and green.
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Ψcltr
B ðkÞ ¼ e - ia4 kxþkyþkzð Þ 1þ e - ia2 kxþkyð Þ þ e - ia2 kyþkzð Þ þ e - ia2 kxþkzð Þ

� �
ð15bÞ

Using this definition in equation (7) and assuming that the
functions λ2A(k) = λ2B(k) = λ2AB(k) = λ2(k), where λ2(k) is defined by
equation (11), we have:

~Ω
AA
ZB kð Þ ¼ ~Ω

BB
ZB kð Þ ¼ 4þ 4 cos

kxa
2

� �
cos

kya
2

� ��

þ cos
kya
2

� �
cos

kza
2

� �
þ cos

kxa
2

� �
cos

kza
2

� ��
ð16aÞ

~Ω
AA
ZB kð Þ ¼ 2 cos a

4 kx þ ky þ kz
� �� �

´ 4þ 4ð Þ cos kxa
2

� �
cos kya

2

� ��
þ cos

kya
2

� �
cos

kza
2

� �
þ cos

kxa
2

� �
cos

kza
2

� ��
ð16bÞ

The difference in size of different species of atoms has been taken
into account in the short-range potential. In these simulations, the
ratio of two atomic radii was chosen to be 0.875. The size of the
simulation grid, l̂ ¼ 0:25, was measured in the unities of r1A.
Therefore, the value of r1B was chosen equal to 3:5̂l. The growth of
the zinc-blende structure is shown in Figure 3 and in
Supplementary Movie 3 (see Supplementary Information).
Molecules with a helix architecture are observed in

organic materials16, helix-shaped graphite nanotubes,17,18 liquid
crystal,19,20 proteins, and, of course, DNA and RNA polymeric
molecules.21,22 However, the most challenging test of the potency
of the fraton theory would be its ability to describe a spontaneous
self-assembly for the most interesting case relevant to biology,
that is, the self-assembly of a double-helix polymer from a ‘soup’
of randomly distributed monomers. We chosen this system
because, as far as we know, a self-assembly of randomly
distributed monomers into double-thread helix polymers was a
too complex phenomenon to prototype by the existing methods.
To model a spontaneous self-assembling of a helix polymer

consisting of two complimentary threads, we considered two
types of mutually complementary fratons whose ‘condensation’
should produce two kinds of mutually complementary monomers.
The model fraton–fraton potential producing a helix structure

should be directional and have a built-in chirality. This is achieved
by a choice of a bonding star of the cluster that has the chirality
corresponding to the desired helix geometry. The geometrical
parameters of the configuration of the structural cluster are the
pitch length, P, the number of coils per pitch, n0= 6, the distance
between coils in z-direction, h, and the radius of the coil, u (see
Figure 4). Then the coordinates of points of the helix occupied by
molecules are:

rs ¼ ucos
2π
n0

s

� �
; usin

2π
n0

s

� �
;
h
n0
s

� �
ð17Þ

where s runs from 0 to n0− 1, n0 is the number of coils in the pitch.
We again start from a construction of the model Hamiltonian

that should lead to a condensation of a randomly distributed
fratons into the helix structure. To do this, the structural cluster
that consists of two pitches has been chosen. We had to choose a
two-period cluster because fratons in this model have no
orientational degrees of freedom and thus have no built-in
chirality. The second-pitch segment of the cluster is needed to
introduce a chirality into the long-range part of the model
potential. The size of the structural cluster would be drastically
reduced if the chirality were built-in in the short-range part of the
fraction–fraton interaction. This can be done by a straightforward
modification of the short-range interaction.

Using this definition of cluster for the formulation of the
function Ψ(k) for the helical structure, presented in Figure 4 gives:

Ψcltr kð Þ ¼ 1þ e - n0hkz
� � Xn0 - 1

n¼0

e - i xnkxþynkyþznkzð Þ
 !

ð18Þ

Then function ~ΩH kð Þ is:

~ΩH kð Þ ¼ 2þ 2 cos hn0kzð Þð Þ 6þ 2
Xn0 - 1

n4m¼0

cos ϕ n;mð Þð Þ
 !

ð19Þ
where

ϕ n;mð Þ ¼ kxu cos
2πn
n0

� �
- cos

2πm
n0

� �� �

þ kyu sin
2πn
n0

� �
- sin

2πm
n0

� �� �

þ kzh n -mð Þ ð20Þ
We also assumed that the desired helix has a single monomer in
each coil and approximate these monomers by a spherical shape.
The latter is not a critical assumption for the theory. It is just a
simplification that reduces the computational time. The short-
range interaction was described by equation (6). The parameters
of the ~yðkÞ function were chosen the same as for the diamond
structure. The size of simulation box was 210 × 32 × 32. The initial
embryo lifting the spatial and rotational energy degeneration was
a one pitch inhomogeneity introduced in the centre of the
simulation box. As was discussed previously, to construct a model
potential we should choose the function λ2(k). For the same
reasons as before, we assumed that the function, λ2(k), is a step
function defined as:

λ2 kð Þ ¼ λ2 if - δ�ϕ n;mð Þ�2π þ δ for n -m ¼ 1;
0 otherwise

	
ð21Þ

The condition n−m= 1 defines the longest period of the function
~wLRðkÞ for helix.

P

u

h

z

x

y

Figure 4. Illustration of the geometrical parameters of the helical
structure: P is a pitch, h is a distance between the nearest coils along
the z-axis and helix radius u.
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In the first step, we considered a random distribution of fratons
of one kind. The solution of equation (1) with the model potential
given by equations (19) and (20) in this case describes an
evolution that eventually produces the single-stranded helix
shown in Figure 5.
The introduction of the second kind of fratons, which is

complementary to the first kind, results in their self-assembly of a

complementary strand and the formation of a double-helix
molecule. To model double-helix growth, we have to introduce
(as for the zinc-blend structure) complimentary fratons of two
types, A and B that form each helix thread. We used the same type
of the structural clusters for the fratons of the kind A and B. Each
of them consists of two pitches of helix structure. However, the
clusters are rotated with respect to each other about z-axis by

Figure 5. Example of self-assembly of the fratons into the helix structure at reduced time of (a) t̂ ¼ 0, (b) t̂ ¼ 200;000, (c) t̂ ¼ 250; 000,
(d) t̂ ¼ 300;000 and (e) t̂ ¼ 700;000. The input parameters in this simulation are: λ̂1 ¼ 61:14, λ̂2 ¼ - 69:87, ĥ ¼ û ¼ 1:56, n0 = 6, ξ= 2, D̂ ¼ 1,
ρ̂ ¼ 0:0096, l̂ ¼ 0:22, Δr̂ ¼ 0:17 and T̂ ¼ 0:568. The size of the simulation box is 32 × 32 × 210. The initial configuration shown in a is n0+1 coils in
the helix structure.

Figure 6. Self-assembly of the fratons into a double-helix structure at reduced time of (a) t̂ ¼ 0, (b) t̂ ¼ 150;000, (c) t̂ ¼ 200;000, (d) t̂ ¼ 300;000
and (e) t̂ ¼ 1; 500;000. The input parameters in this simulation are λ̂1A ¼ λ̂1B ¼ 4:07, λ̂2A ¼ λ̂2B ¼ - 4:07, λ̂2AB ¼ - 1:78, r1A= r1B, ĥ ¼ û ¼ 1:56,
n0 = 6, ξ=2, D̂AA ¼ D̂BB ¼ 1, D̂AB ¼ - 0:5, ρ̂A ¼ ρ̂B ¼ 0:0096, l̂ ¼ 0:22, Δr̂ ¼ 0:17, and T̂ ¼ 0:033. The size of the simulation box is 32 × 32× 210. The
initial configuration shown in a is one helix and one coil of the second helix.
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φ= π. Then, using the definition of the functions Ψα kð Þ by
equation (4) for α=A, B, gives:

Ψcltr
A kð Þ ¼ 1þ e - in0h2 kz

� � Xn0 - 1
n¼0

e - i xnkxþynkyþznkzð Þ
 !

ð22aÞ

Ψcltr
B kð Þ ¼ e - in0h2 kz 1þ e - in0h2 kz

� � Xn0 - 1
n¼0

e - i xnkxþynkyþznkzð Þ
 !

ð22bÞ

We assume that, where ~Ω
AA
DH kð Þ ¼ ~Ω

BB
DH kð Þ ¼ ~ΩH kð Þ, ~ΩH kð Þ is

defined by equation (19). Then the function ~Ω
AB
DH kð Þ is:

~Ω
AB
DH kð Þ ¼ 2 cos h

n0
2
kz

� �
2þ 2cos hn0kzð Þð Þ

6þ 2
Xn0 - 1

n4m¼0

cos ϕ n;mð Þð Þ
 !

ð23Þ

The simulation box size and input parameters for two kinds of
complimentary fratons were chosen the same as for a single-
thread helix and the interaction between helix is defined by
λ̂2AB ¼ - 1:78, T̂ ¼ 0:033.
In spite of all these oversimplifications, this model describes

some generic features relevant to the spontaneous formation of
single-stranded polymeric molecule and the growth of the
complementary strand of the monomers eventually producing a
double-stranded helix configuration (see Figure 6). In this case, the
first single-stranded helix is a template for the aggregation on it of
complementary monomers to form a double-stranded helix. For
clarity, we show the clusters of fratons (monomers) of the second
strand in red. The spontaneous growth of the helix and double-
helix structure is also shown in Supplementary Movie 4 and 5
(see Supplementary Information).

DISCUSSION
In this paper, we selected the most difficult cases wherein the
initial system is atomically disordered so that its configuration
‘knows’ nothing about the final atomic pattern that should be
spontaneously self-assembled. This self-assembling is driven only
by the chosen model Hamiltonian, and, specifically, by mutual
orientation, length and strength of interatomic bonds. On a top of
that, we considered situations wherein the self-assembling is
diffusional and usually takes a long time, which may range from a
fraction of a second to years. A typical time of this evolution is
dictated by the typical time of evolution of time-dependent
ensemble rather than typical times of atomic dynamics like time of
atomic vibrations. Difficulty in addressing such slow evolving
systems probably was a reason why a spontaneous formation of
some of them (crystals and polymers) from a liquid solution of
atoms or monomers has not been modelled yet in the diffusional
time scale.
The developed approach opens a way to answer numerous

outstanding questions concerning the atomistic mechanisms of
the formation of defects (dislocations, grain boundaries, etc.),
nucleation in solid–solid transformations, the formation of
polymers due to aggregation of monomers in their solution,
folding and crystallisation of polymers, and their responses to
external stimuli. This list can be significantly extended.
Especially interesting are the modelling results describing the

spontaneous self-assembly of monomers into a single-stranded
polymeric helix and the formation of a double-helix structure
obtained by aggregation of complementary monomers on the
single-stranded helix playing the role of a template. This result
may be also considered as an attempt to formulate and execute
the simplest prototyping of the spontaneous formation of
homopolymeric DNA from a liquid solution of monomers playing
the role of nucleotides.

Finally, the use of the new model Hamiltonian formulated in
terms of the structural clusters and proposed fraton model
provide already a ready tool to address a general problem of
spontaneous pattern formation by self-assembling of any
randomly distributed building elements in the time scale ranging
from sub-seconds to years. This approach can be also straightfor-
wardly extended for the prototyping of self-assembly of
elementary building block monomers with more complex
molecular structures. In the latter case, we have to generalise
the concept of fratons of atoms by introducing fraton of
molecules and modify accordingly the model short-range part of
the model fraton–fraton Hamiltonian. Then this modification
should provide a ‘condensation’ of the molecular fratons into
molecules and subsequent self-assembly of these molecules. In
principle, this approach can be even used for the description of
three-dimensional pattern formation by any macroscopic objects
and optimisation of their properties. The ‘fratons’ in this case
being fragments of these objects are also macroscopic.

MATERIALS AND METHODS
The proposed fraton theory rests on two novel conceptual premises:
(a) the introduction of interacting pseudoparticles that we call fratons that
described two configurational states of each point of continuum space.
One is an event in which the point is inside the atomic sphere of any atom
and the other is an event in which the point is outside of atomic sphere;
the fratons are considered as a non-ideal gas whose ‘condensation’
describes a diffusional self-assembling of atomic system, and (b) a concept
of a structural cluster function describing the directions, length and
strength of interatomic bonds. The latter allows us to formulate a new and
simple model Hamiltonian that is proportional to a bilinear expansion in
these cluster functions. This model Hamiltonian provides the formation of
a predetermined atomic structure and has a sufficient flexibility to describe
the desired mechanic and thermodynamic properties of this structure.
The numerical solution of kinetic equation (1) for the density function of

atomic fractons was carried out by using the semi-implicit Fourier-spectral
method in which the time variable is discretised using semi-implicit
schemes and space variables are discretised using the Fourier-spectral
method15.

ACKNOWLEDGEMENTS
We thank R Patte for helpful advices and discussions during code optimisation. This
work was supported in part by the grant from the French National Agency for the
Research (ANR) project ‘Spiderman’. The simulations have been performed at the
Centre de Ressources Informatiques de Haute-Normandie (CRIHAN) and at the IDRIS
of CNRS.

CONTRIBUTIONS
All authors contributed extensively to the work presented in this paper.

COMPETING INTERESTS
The authors declare no conflict of interest.

REFERENCES
1. Klein, M. L. & Shinoda, W. Large-scale molecular dynamics simulations of self-

assembling systems. Science 321, 798–800 (2008).
2. Rapaport, D. C. The Art of Molecular Dynamics Simulation. Cambridge Univ. Press,

(2004).
3. Landau, D. P. & Binder, K. A guide to Monte Carlo simulations in statistical physics

(Cambridge Univ. Press, 2015).
4. Chatterjee, A. & Vlachos, D. G. An overview of spatial microscopic and accelerated

kinetic Monte Carlo methods. J. Comput. Aided Mater. Des. 14, 253–308 (2007).
5. Rudd, R. E. & Broughton, J. Q. Coarse-grained molecular dynamics and the atomic

limit of finite elements. Phys. Rev. B 58, R5893–R5897 (1998).
6. Tozzini, V. Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15,

144–150 (2005).

Atomic scale modelling of self-assembly dynamics
M Lavrskyi et al

8

npj Computational Materials (2016) 15013 © 2016 Shanghai Institute of Ceramics, Chinese Academy of Sciences/Macmillan Publishers Limited



7. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.
Equation of state calculations by fast computing machines. J. Chem. Phys. 21,
1087–1092 (1953).

8. Khachaturyan, A. G. Ordering in substitutional and interstitial solid solutions. Prog.
Mater. Sci. 22, 1–150 (1978).

9. Khachaturyan, A. G. Theory of Structural Transformations In Solids (Wiley, 1983).
10. Khachaturyan, A. G. Microscopic theory of diffusion in crystalline solutions and

the time evolution of X-ray and thermal neutron diffuse scattering. Fiz. Tverd. Tela
9, 2595–2601 (1967).

11. Lavrskyi, M., Zapolsky, H. & Khachaturyan., A. G. Fraton Theory and Modelling of
Self-Assembling of Complex Structures. Preprint at ohttp://http://arxiv.org/abs/
1411.55874 (2014).

12. Mahan, G. D. Many Particle Physics (Springer, 1981).
13. Suris, R. A. The application of functional methods to the theory of solid solutions.

Fiz. Tverd. Tela 4, 1154–1161 (1962).
14. Connolly, J. W. D. & Williams, A. R. Density-functional theory applied to phase

transformations in transition-metal alloys. Phys. Rev. B 27, 5169–5173 (1983).
15. Chen, L. Q. & Shen, J. Applications of semi-implicit Fourier-spectral method to

phase field equations. Comp. Phys. Commun. 108, 147–158 (1998).

16. Meyers, M. A., Chen, P.-Y., Lin, A. Y. & Seki, Y. Biological materials: structure and
mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

17. Iijima, S. Single-shell carbon nanotubes of 1-nm diameter. Nature 354,
56–58 (1991).

18. Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 99, 1787–1800 (1999).
19. Dierking, I. Texture of Liquid Crystals (Wiley-VCH Verlag, 2003).
20. Singh, S. Phase transitions in liquid crystals. Phys. Rep. 324, 107–269 (2000).
21. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acidsNature 171,

737–738 (1953).
22. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

Supplementary Information accompanies the paper on the npj Computational Materials website (http://www.nature.com/npjcompumats)

Atomic scale modelling of self-assembly dynamics
M Lavrskyi et al

9

© 2016 Shanghai Institute of Ceramics, Chinese Academy of Sciences/Macmillan Publishers Limited npj Computational Materials (2016) 15013

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Quasiparticle approach to diffusional atomic scale self-assembly of complex structures: from disorder to complex crystals and double-helix polymers
	Introduction
	Model

	Results
	Discussion
	Materials and methods
	Acknowledgements
	Note
	References


