
ARTICLE OPEN

Oral treatment with Eubacterium hallii improves insulin
sensitivity in db/db mice
Shanthadevi Udayappan1, Louise Manneras-Holm2, Alice Chaplin-Scott1, Clara Belzer3, Hilde Herrema1, Geesje M Dallinga-Thie1,
Silvia H Duncan4, Erik SG Stroes1, Albert K Groen5, Harry J Flint4, Fredrik Backhed2,6, Willem M de Vos3,7 and Max Nieuwdorp1,2,8,9

An altered intestinal microbiota composition is associated with insulin resistance and type 2 diabetes mellitus. We previously
identified increased intestinal levels of Eubacterium hallii, an anaerobic bacterium belonging to the butyrate-producing
Lachnospiraceae family, in metabolic syndrome subjects who received a faecal transplant from a lean donor. To further assess the
effects of E. hallii on insulin sensitivity, we orally treated obese and diabetic db/db mice with alive E. hallii and glycerol or heat-
inactive E. hallii as control. Insulin tolerance tests and hyperinsulinemic-euglycemic clamp experiments revealed that alive E. hallii
treatment improved insulin sensitivity compared control treatment. In addition, E. hallii treatment increased energy expenditure in
db/db mice. Active E. hallii treatment was found to increase faecal butyrate concentrations and to modify bile acid metabolism
compared with heat-inactivated controls. Our data suggest that E. hallii administration potentially alters the function of the
intestinal microbiome and that microbial metabolites may contribute to the improved metabolic phenotype.
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INTRODUCTION
The prevalence of obesity and type 2 diabetes mellitus is expected
to rise to 1 in 3 adult subjects having type 2 diabetes mellitus in
2050.1 The pathophysiology of these metabolic disorders is
complex, involving both environmental (dietary) and genetic
factors affecting altered intestinal microbiota composition.2 Insulin
resistant subjects are characterised by reduced levels of short-
chain fatty acid (SCFA)-producing bacteria.3,4 Moreover, daily oral
supplementation with the SCFA butyrate exerts beneficial effects
on insulin resistance and dyslipidemia in diet-induced obese
mice.5 Transplantation of lean healthy microbiota in both murine
and human models of insulin resistance has been shown to
significantly improve insulin sensitivity and to increase levels of
butyrate-producing bacteria in the gut.6,7 With regards to the
latter, we identified a specific increase in the butyrate-producer
Eubacterium hallii in small intestinal biopsies of human obese and
insulin resistant subjects upon lean donor faecal transplantation,7

which was associated with improved (peripheral) insulin sensitivity.
E. hallii is an anaerobic, Gram-positive, catalase-negative

bacterium belonging to the Lachnospiraceae family of the phylum
Firmicutes that is present in both murine and human faeces.8

E. hallii is a butyrate-producing species. Interestingly, in contrast
to other intestinal bacterial isolates like Roseburia and
Faecalibacterium that produce butyrate from monosaccharides,
E. hallii has the capacity to also produce butyrate from lactate and
acetate in a low pH environment such as the proximal small
intestine.9 However, in vivo treatment with oral E. hallii has
never been performed. We therefore performed a study in obese

and insulin resistant db/db mice to investigate whether oral
administration (by gavage) of E. hallii would have beneficial effects
on insulin sensitivity. Upon identification of the optimal E. hallii
treatment dose of 108 CFU per day, we used this dose to
subsequently investigate the effect of active and heat-inactivated
E. hallii treatment on insulin sensitivity and energy metabolism
using hyperinsulinemic-euglycemic clamp and metabolic cage
approaches.
We found that oral treatment with active E. hallii improved

insulin sensitivity in severely insulin resistant db/db mice and
significantly increased energy expenditure. Furthermore, our data
indicate that E. hallii mildly modifies SCFA production and bile
acid composition, which potentially contributes to the beneficial
effects of E. hallii treatment on insulin sensitivity in obese and
diabetic db/db mice.

RESULTS
E. hallii treatment dose-dependently improves insulin-mediated
glucose clearance
Oral butyrate supplementation has been previously reported to
regulate insulin sensitivity.5 As E. hallii is a butyrate-producing
bacterium, we assessed whether administration of E. hallii could
have beneficial effects on insulin sensitivity in a mouse model for
diabetes. We therefore explored the effects of oral administration
of increasing dosages of E. hallii on basal parameters (i.e., body
weight and food intake) and insulin responsiveness in severely
obese and diabetic db/db mice. We found a dose-dependent
increase in caecal E hallii concentrations upon treatment with
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Figure 1. E. hallii treatment dose-dependently improves insulin sensitivity. Male db/dbmice (n= 8 per group) were daily treated with vehicle or
increasing doses of E. hallii by gavage for 4 weeks. Figures depict effect of E. hallii treatment on (a) relative abundance of E. hallii in caecum,
(b) body weight (showing average body weight per treatment group after 4 weeks of treatment and weekly weight gain throughout
treatment period), (c) insulin tolerance test (showing insulin-mediated glucose clearance on t= 60, 90 and 120 min after insulin administration
and corresponding area under the curve (AUC)), (d) adiposity index (epididymal fat pad as % of body weight), (e) hepatic triglyceride (TG)
content, (f) expression levels of hepatic lipogenic genes. Data are mean± s.d. Statistical analysis was performed using Student’s t-test.
*Po0.05; **Po0.01.
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100 μl of active 106, 108 and 1010CFU E. hallii (once daily for four
weeks) (Figure 1a). Nevertheless, global analysis showed no
major effect on the intestinal communities (data not shown).
Importantly, body weight remained stable in all treatment groups
compared with glycerol-treated controls (106 CFU: 38 ± 1.5 g,
108 CFU: 40 ± 0.3 g and 1010 CFU: 41 ± 0.3 g versus placebo:
39 ± 1.3 g. NS; Figure 1b). We then set out to assess insulin
responsiveness by performing intraperitoneal insulin tolerance
tests (ITT) in all treatment groups. Interestingly, E. hallii-treated
groups displayed significantly improved insulin-mediated
reduction in blood glucose levels (106 CFU: − 32± 7%, 108 CFU:
− 39 ± 9% and 1010 CFU; − 34 ± 7% Po0.05) after 4 weeks of
treatment compared with glycerol-treated controls (−2 ± 7%
Po0.05; Figure 1c). Altogether, these data indicate that E. hallii
treatment improves insulin-mediated reduction in glucose levels
without affecting food intake and body weight in severely obese
and diabetic mice. The 108 CFU E. hallii-treated mice exhibited the
most remarkable response to insulin at all time points (t= 60, 90
and 120 min). In addition, 108 CFU E. hallii administration resulted

in significantly reduced epididymal fat pad weight (Figure 1d) and
hepatic triglyceride levels (Figure 1e), which was also reflected in
the expression pattern of genes involved in lipogenesis (Fasn and
Acc1 were significantly reduced, (Figure 1f) and gluconeogenesis
(trend towards reduction of G6Pc, Pk, Pck1 were noticed),
(Supplementary Figure S1). This to us suggested that 108 CFU of
E. hallii would be the optimal dosage to perform further
investigations.

E. hallii treatment improves insulin sensitivity and increases energy
expenditure
On the basis of the results from the dose–response study, we
chose 108 CFU E. hallii as daily therapeutic dose and repeated the
study using active and heat-inactivated E. hallii as control. In line
with observations from the dose–response study, body weight
and food intake (Figure 2a,b) were similar in active and heat-
inactivated E. hallii-treated mice. In addition, lean and fat mass
(as % of body weight) were similar in both treatment groups
(Figure 2c).
Considering the effects of E. hallii treatment on insulin-

mediated reduction in glucose levels as assessed by ITT, we
moved forward with an in-depth assessment of insulin sensitivity
by performing hyperinsulinemic-euglycemic clamp experiments in
conscious, unrestrained mice. We assessed the ability of insulin
to suppress endogenous Ra (endogenous rate of appearance,
a marker of hepatic glucose production) and whole-body
glucose disappearance (Rd; Supplementary Table S1). Although
endogenous glucose production was not significantly altered
(active: −33.9±3.7% versus heat-inactivated: −41.1±5.4%, P=0.299),
treatment with E. hallii led to a close-to-significant increase in
the ability of insulin to stimulate Rd (active: 136% versus heat-
inactivated: 109%, P=0.060; Figure 3a). Considering the fact that
db/db mice are severely insulin resistant, the improved Rd following
4 weeks of E. hallii treatment is of significant biological relevance.
Butyrate supplementation has previously been shown to

improve energy expenditure in diet-induced obese mice.5

Altogether with our data on the beneficial effects of E. hallii, a
butyrate producer, on insulin sensitivity in db/db mice, this
motivated us to assess the effect of E. hallii on energy expenditure
in this mouse model. Energy expenditure, oxygen consumption
and CO2 production were monitored in metabolic chambers.
Interestingly, active E. hallii treatment significantly increased
total energy expenditure (active: 214 ± 4 kcal/kg/min versus
heat-inactivated: 191 ± 9 kcal/kg/min, Po0.05; Figure 3b), oxygen
consumption (active: 44.1 ± 0.9 ml/min/kg versus heat-inactivated:
39.6 ± 1.8 ml/min/kg, Po0.05; Figure 3c) and CO2 production
(active: 38.0 ± 1.0 ml/min/kg versus heat-inactivated: 33.4 ± 1.8 ml/
min/kg, Po0.05; Figure 3d) in the dark cycle. Respiratory quotient
(expressed as VCO2/VO2) was not significantly altered (Figure 3e).
In addition, to assess potential E. hallii-mediated changes in
energy absorption, we analysed genes involved in glucose and
lipid absorption in proximal part of the intestine. E. hallii treatment
reduced intestinal genes involved in glucose (Sglt1 and Glut2)
transport and lipid absorption (Cd36 and Fatp4; Supplementary
Figure S2).
To assess whether treatment with E. hallii increased SCFA levels,

potentially providing insight into E. hallii-mediated effects on
energy metabolism, we collected faeces (24 h) and measured
concentrations of the SCFA’s butyrate, acetate and propionate.
Active E. hallii treatment moderately increased faecal butyrate
concentrations compared with heat-inactivated controls while
propionate and acetate concentrations remained unaffected
(Figure 4a).
Alterations in gut microbiota composition have significant impact

on bile acid levels and bile acid composition.10 In addition to their
role in solubilising food and uptake of food-soluble vitamins,
bile acids are also important regulators of glucose and energy
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Figure 2. Effect of active and heat-inactivated E. hallii on body
weight, food intake and body composition. Male db/db mice
(n= 7–10 per group) were daily treated with active or heat-
inactivated E. hallii (108 CFU) for 4 weeks. Figures depict effect of
active or heat-inactivated E. hallii treatment on (a) body weight.
(b) food intake and (c) body composition (as determined by
magnetic resonance imaging). Data are mean± s.d. Statistical
analysis was performed using Student’s t-test *Po0.05.
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homeostasis.11 We therefore assessed whether active E. hallii
treatment affected plasma and faecal bile acid levels and composi-
tion. Plasma primary and secondary bile acid levels were similar in
active versus heat-inactivated E. hallii-treated mice (Figure 4b, pie
chart). Further analysis of primary and secondary bile acid species
revealed that the concentration of the secondary bile acid tauro-
conjugated deoxycholic acid was significantly increased (Figure 4b,

bar graph). Faecal primary and secondary bile acid levels remained
unaffected by active E. hallii treatment (Figure 4c, pie chart). Levels
of the primary bile acid β-MCA and the secondary bile acid ω-MCA,
however, were significantly reduced in active versus heat-inactivated
E. hallii -treated mice (Figure 4c, bar graph).
We then assessed expression levels of genes involved in bile

acid metabolism and transport in liver and small intestine. Bile
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Figure 3. E. hallii treatment improves insulin sensitivity and energy expenditure. Male db/db mice (n= 7–10 per group) were daily treated with
active or heat-inactivated E hallii (108 CFU) for 4 weeks. Figures depict (a) effect on peripheral insulin sensitivity as assessed by
hyperinsulinemic-euglycemic clamp, (b) total energy expenditure, (c) O2 consumption, (d) CO2 production and (e) respiratory exchange ratio.
Data are mean± s.d. Statistical analysis was performed using Student’s t-test *Po0.05.
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acid synthesis is tightly regulated by the bile acid receptor
Farnesoid X receptor (Fxr) in liver and intestine. Hepatic Fxr exerts
negative feedback control on cholesterol 7 alpha-hydroxylase
(Cyp7al), the rate-limiting enzyme in hepatic bile salt synthesis.12

Expression levels of hepatic Fxr and Cyp7a1 were similar in active
and heat-inactive E. hallii-treated db/db mice (Figure 4d).
Expression of genes encoding bile acid-synthetic genes such as
(Cyp7a1, Cyp8b1, Cyp7b1 and Cyp27a1) and bile acid transporters
(Ntcp, Oatp1, Mrp3, Bsep and Mrp2) remained unaffected by active
E. hallii treatment. Although expression of Fxr in the small intestine
was not altered by active E. hallii treatment, levels of fibroblast
growth factor 15 (Fgf15), an FXR-target gene, were significantly
reduced, which is suggestive of reduced activation of FXR in the
intestine (31). We investigated the effect of active E. hallii
treatment on genes regulating intestinal bile acid absorption by
analysing the transcription factor (Gata4), apical sodium-
dependent bile acid transporter (Abst), apical organic solute
transporter (Ostα) and ileal lipid binding protein (Ilbp).13 Active
E. hallii treatment significantly reduced and increased the
expression of Gata4 and Ostα, respectively, compared with heat-
inactive E. hallii treatment. Nevertheless, expression levels of Ilbp
and Abst remained unaffected (Figure 4e).

DISCUSSION
The current study demonstrates that daily oral administration of E.
hallii improves insulin sensitivity and increases energy metabolism
in severely obese and diabetic db/db mice. Our observations that

administration of increasing dosages of E. hallii did not affect body
weight or food intake indicate that E. hallii treatment might
be a safe and effective new probiotic strain to improve insulin
sensitivity.
In the dose–response study, we found that E. hallii treatment

improved insulin sensitivity, yet the highest treatment dose had
less effect on insulin sensitivity than the lower dosages. This
phenomenon was also found in a human intervention trial using
B. infantis and might be explained by the fact that these high
concentrations (41010 CFU of bacterial strains) induce a crowding
effect resulting in less efficient dispersion of the bacteria over
the (small) intestine.14 Moreover, oral supplementation of heat-
inactivated E. hallii had no effect on murine metabolism, which is
in line with the previous data studying the role of specific
microbial strains on insulin sensitivity.15 Moreover, as we did not
see any effect on body weight and the fact that we do not have
the data on locomotor activity upon 4 weeks of E. hallii treatment,
further studies will have to elucidate the long-term effects of
E. hallii on all these parameters.
It has long been recognised that intestinal bacteria affect SCFA

concentrations.8,9 Bacterial fermentation of indigestible fibres in
the intestine, for example, by the butyrate-producer E. hallii,
results in the production of SCFAs such as butyrate. Oral SCFAs
administration to mice fed a high-fat diet reduced body weight
and improved insulin sensitivity without changing food intake or
levels of physical activity.5 SCFAs have been suggested to act on
food intake through G-protein-coupled receptors such as GPR41
and GPR43, which subsequently increase release of the satiety
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Figure 3. Continued.
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Figure 4. Effect of E. hallii treatment on short-chain fatty acids (SCFA’s) and bile acids. Male db/db mice (n= 7–10 per group) were daily treated
with active or heat-inactivated E. hallii (108 CFU) for 4 weeks. Figures depict (a) faecal SCFA levels, (b) plasma primary and secondary bile acids
and plasma bile acid composition, (c) faecal primary and secondary bile acids and plasma bile acid composition, (d) hepatic and (e) intestinal
(duodenum, jejunum, ileum and colon) expression of genes involved in bile acid metabolism and transport. Data are mean± s.d. Statistical
analysis was performed using Student’s t-test *Po0.05; **Po0.01.
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hormones PYY and GLP-1. Furthermore, butyrate has been
implicated in regulation of intestinal gluconeogenesis thereby
improving glucose and energy homeostasis.16 Although oral
E. hallii treatment had only minor effects on intestinal E. hallii
abundance, levels of the SCFA butyrate, a metabolite of E. hallii,
were doubled (~217%, NS) in active E. hallii-treated mice
compared with heat-inactivated E. hallii-treated controls.
Increased butyrate levels might potentially mediate the observed
beneficial effects on peripheral insulin sensitivity and energy
expenditure in active E. hallii-treated db/db mice. However, this
hypothesis would require further analysis.
After release into the duodenum, bile acids travel the length of

the small intestine and are reabsorbed and transported back to
the liver mainly in the distal ileum.17,18 Ruminococcaceae and
Lachnospiraceae families of the Firmicutes phylum (such as E. hallii)
can mediate primary bile acid conversion to secondary bile
acids.19 Furthermore, modulation of intrinsic bacterial bile acid
hydrolysis significantly impacts bile acid composition and
subsequent metabolic processes in the host.20 Although we
found only a small effect of E. hallii treatment on intestinal bile
acid metabolism, it is tempting to speculate that E. hallii indeed
affects energy metabolism and insulin sensitivity via bile acids.

Indeed, the E. hallii L2–7 genome contains 2 complete
functional bile salt hydrolase (BSH) genes (W.M.d.V., personal
communication) and their role in bile acid metabolism is currently
under detailed investigation. Although total plasma and faecal
secondary bile acid levels were similar in active and heat-
inactivated E. hallii-treated db/db mice, active E. hallii treatment
increased levels of the secondary bile acid tauro-conjugated
deoxycholic acid. Interestingly expression of other FXR targets
such as Ilbp and Abst remained unaltered, but expression of the
transcription factor Gata4 decreased significantly. A similar
association between Gata4 and Fgf15 was recently reported by
Out et al.21 and might be a direct interaction of microbiota with
Gata4 expression as also suggested in (ref. 13). Furthermore,
changes in intestinal bacteria have been shown to primarily affect
Fxr targets in the small intestine and not the liver.19,22,23 This is in
line with our observation of decreased expression of the intestinal
Fxr target gene Fgf15 but not the hepatic Fxr target Shp after
active E. hallii treatment. Microbiota modifications using probiotics
have been reported to facilitate changes in intestinal bile acid
transport,24 which is in line with the appreciable elevation of the
bile acid transporter Ostα in the present study.
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Figure 4. Continued.
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In conclusion, we show that daily treatment for 4 weeks with
E. hallii L2–7 has no adverse effects and exerts beneficial effects on
metabolism, potentially via alterations in butyrate formation and
bile acid and metabolism.25,26 Our data thus underscore the
therapeutic potential of replenishing missing intestinal bacterial
strains for the treatment of human insulin resistance.27 Further
research to confirm optimal dose and long-term effects of E. hallii
on human insulin sensitivity and bile acid metabolism is urgently
awaited.

MATERIALS AND METHODS
E. hallii culture
E. hallii strain L2–7 was cultured under anaerobic conditions as described
previously.8,9 Purity was identified by cellular morphology and 16S RNA
gene sequence analysis. Cultures were grown to the end of the
exponential phase, concentrated by anaerobic centrifugation, washed
with phosphate-buffered saline, diluted in a solution containing
maltodextrin and glucose in 10% glycerol until final concentrations of
106 colony forming units (CFU), 108 CFU and 1010 CFU in 100 μl were
reached. Viability was assessed by most probable number analysis by
dilution to extinction and confirmed by microscopic analysis. Samples were
stored at − 80 °C and used within 6 months during which viability was not
noticeably affected.

Animals
All animal experiment were conducted in accordance with the principles of
the ‘Guide to the Care and Use of Experimental Animals’ and were
approved by the local Animal Ethics Committee, Academic Medical Center-
University of Amsterdam, and the University of Gothenburg Animal Studies
Committee.
The methods were carried out in accordance with the approved

guidelines. Male C57Bl6/J db/db mice (12 weeks old) were purchased from
the Jackson Laboratories USA. Animals were housed at AMC SPF vivarium
in groups of 5 animals/cage and fed ad libitum with regular chow diet
(Research Diets, Inc.) and water. Mice were housed under constant
temperature and a 12-h light/dark cycle. At 16 weeks of age, the animals
were daily given an oral 100 μl gavage of comprising 106, 108 and 1010 CFU
of E. hallii in 10% glycerol stock for 4 weeks (n= 8 mice per group). As a
control, an oral 100 μl gavage of 10% glycerol in phosphate-buffered saline
was used (n=8 mice). Twenty-four-hour faeces were collected after
4 weeks of treatment (24 h collection) for bile acid composition analysis. In
the last week of treatment and after an overnight fast, mice (n= 8 per
group) received an intraperitoneal insulin bolus (Actrapid 0.75 U/kg body
weight) and blood glucose was measured (Ascensia Elite glucose meter,
Bayer, Leverkusen, Germany) at t=0, 60, 90 and 120-min post injection for
determination of insulin sensitivity. Thereafter, animals were sacrificed
using 100 mg/kg pentobarbital and faeces and caecum were collected.

Hyperinsulinemic-euglycemic clamp
Male C57Bl6/J6 db/db mice (12 weeks old) were purchased from the
Jackson Laboratories, Bar Harbor, ME, USA. Animals were housed at
University of Gothenburg SPF vivarium and fed ad libitum with regular
chow diet (Research Diets, New Brunswick, NJ, USA) and water. Mice were
housed under constant temperature and a 12-h light/dark cycle and
underwent daily oral 100 μl gavage for 4 weeks with 108 CFU active or
heat-inactivated E. hallii (15 min at 70 °C) as control (n=7–10 per group). In
the last week of treatment, at least 4 days before the clamp a catheter was
surgically placed in the jugular vein for infusion of insulin and glucose
under isoflurane anaesthesia. Prior to the clamp, mice were fasted for 4 h
and placed in individual plastic containers. Basal blood glucose (Countour
Next blood glucose meter, Bayer AB, Solna, Sweden) was used from tail-
blood measurements. A bolus injection of [3-3H] glucose (5 μCi;
PerkinElmer, Waltham, MA, USA) was given through the jugular vein
catheter (t=− 80 min prior insulin infusion), followed by a continuous
infusion of 0.05 μCi/min for assessment of basal glucose turnover rate.
Three consecutive blood samples were taken at steady state (t=− 20, − 10
and 0 min prior insulin infusion) for the determination of both plasma
[3-3H] glucose and glucose concentration. At t= 0, a priming dose of insulin
(178 mU/kg; Actrapid Penfill, Novo Nordisk, Bagsværd, Denmark) was
given, followed by a continuous insulin infusion rate of 20 mU/min/kg. The
infusion of [3-3H] glucose was increased to 0.1 μCi/min during clamp to

minimise changes in specific activity during insulin infusion. Blood glucose
was measured at 10-min intervals, via tail-blood sampling, to adjust the
glucose infusion rate (GIR; 30% glucose Fresenius Kabi, Bad Homburg,
Germany) to maintain blood glucose concentration at the basal level. At
steady state, defined by stable glycemia and GIR (approximately at
t=120 m interval), three consecutive blood samples were taken at 10 min
intervals to determine whole-body glucose utilisation (Rd) and hepatic
glucose production (Ra) under hyperinsulinemic-euglycemic- conditions.
Plasma insulin was measured at t=− 10 min (basal) and 120 min (clamp).
Animals were killed by an overdose of pentobarbital (Apoteket Farmaci AB,
Stockholm, Sweden) and tissue was collected. The blood samples were
deproteinised, evaporated and resuspended in deionised water for the
determination of radioactivity (Beckman LS6500 Multipurpose Scintillation
Counter, Providence, RI, USA). Whole-body glucose appearance (Ra) and
endogenous glucose production (endogenous Ra), a measure of hepatic
glucose production, were calculated as published as previously
described.28

Metabolic chamber experiments and body composition
During a parallel experiment, male db/db mice (aged 12 weeks,
n= 7–10 per group) were treated orally with 100 μl of 108 CFU active or
heat-inactivated E. hallii (15 min at 70 °C) as control for 4 weeks. Thereafter,
mice were individually housed in Somedic INCA metabolic cages (Somedic
AB, Hörby, Sweden) to study total energy expenditure and respiratory
quotient. Oxygen consumption (VO2) and CO2 production (VCO2) were
recorded every 2 min for 23 h. Temperature in the metabolic chamber was
kept constant at 21 °C and animals had free access to food and water. Data
from the first hour was discarded to account for animal acclimatisation.
The average total energy expenditure per hour was determined using
Weir's equation: (3.9 × VO2)+(1.1 × VCO2) and respiratory quotient was
calculated as the VCO2/VO2 ratio. Also, magnetic resonance imaging
scanning for body composition was performed as previously described.25

Intestinal microbiota analysis
Abundances of E. hallii were determined in caecal content by using the
Mouse Intestine Tract Chip as previously reported.15,29 Total genomic DNA
was extracted from the frozen caecum with the QIAamp DNA stool mini-kit
(Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. 16S
rRNA gene amplification, in vitro transcription and labelling, and
hybridisation were carried out as described.30 The data were normalised
and analysed using a set of R-based scripts in combination with a custom-
designed relational database, which operates under the MySQL database
management system. For the microbial profiling, the Robust Probabilistic
Averaging signal intensities of 2667 specific probes for the 94 genus-level
bacterial groups detected on the MITChip were used.31 Diversity
calculations were performed using a microbiome R-script package
(https://github.com/microbiome). Multivariate statistics, redundancy ana-
lysis, and principal response curves were performed in Canoco 5.0 and
visualised in triplots or a principal response curves plots.32

SCFA and bile acid profiling
Twenty-four-hour faecal samples (pooled from each cage) were collected
and stored for later analysis. SFCA content was analysed by gas liquid
chromatography following conversion to t-butylmethylsilyl derivate as
previously described.9 Concentrations of different bile acids were
measured twice in 24-h faecal samples collected in week 4 and in plasma.
An internal standard was added before extraction with 0.2 mol/l NaOH at
800 °C for 20 min. Bile salt were trimethylsilylated with pyridine,
N,O-Bis(trimethylsilyl) trifluoroacetamide and trimethylchlorosilane. Faecal
bile acid profile was measured using capillary gas chromatography
(Hewlett–Packert gas chromatograph; HP 6890, Mountain View, CA, USA)
equipped with a FID and a CP Sil 19 capillary column; length 25 m, internal
diameter 250 μm and a film thickness of 0.2 μm (Chrompack BV,
Middelburg, The Netherlands). Plasma bile acids were determined using
liquid chromatography tandem mass spectrometry as described previously
(17). The primary bile acids cholic acid (CA), taurocholic acid, muricholic
acid (MCA), tauroalpha muricholic acid and taurobeta muricholic acid as
well as the secondary bile acids taurohyodeoxycholic acid, deoxycholic
acid, taurodeoxycholic acid and omega murocholic acid were analysed in
plasma and 24 faeces.21 The total amount of primary and secondary bile
acids was calculated as the sum of the individually quantified bile salts.
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Quantitative real-time PCR
Liver and intestinal tissues were homogenised with tissue-magnaLyzer
(Roche, Basel, Switzerland). Total RNA was extracted using Tri-pure reagent
(Roche). Complementary DNA was prepared by reverse transcription of
1 μg total RNA using reverse transcription kit (BioRad, Hercules, CA, USA).
Hepatic genes involved in lipogenesis (Srebp1c, Fasn, Acc1, Acc2 and Dgat)
and gluconeogenesis (Gck1, G6Pc, Pk and Pck1) were examined. Genes
involved in bile acid metabolism and transport were tested in liver (Cyp7a1,
Cyp8b1, Cyp7b1 and Cyp27a, Ntcp, Oatp1, Mrp3, Bsep and Mrp2) and
proximal to distal intestinal segments (duodenum, jejunum and ileum) for
(Tgr5, Fxr, Gata4, Asbt, Ilbp Ostα and Fgf15).33 Real-time quantitative PCR
was performed using Sensifast SYBR master mix (GC biotech, Alphen a/d
Rijn, the Netherlands). Gene-specific intron–exon boundary spanning
primers were used and all the results were normalised with the house
keeping gene 36B4. All samples were analysed in duplicate and data were
analysed according to the 2ΔΔCT method. Primer sequences are presented
in Supplementary Table S2.

Statistical analysis
On the basis of distribution of the clinical data, Student t-test or
Mann–Whitney tests (two-sided) were used to analyse the difference
between clinical groups. Microbiota analyses were done as described
above. *P valueo0.05 or **Po0.01 were considered statistically significant.
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