Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of an excited pair state in superfluid 3He

Abstract

Collective modes are the fingerprint of a condensed phase. The spectroscopy of these modes in superfluid 3He and unconventional superconductors can provide key information on the symmetry of the condensate as well as the microscopic pairing mechanism responsible for the ground state and excitation energies. Here, we use interferometry within an acoustic cavity—which is very sensitive to changes in the velocity of transverse sound—to reveal a new collective mode in the B phase of superfluid 3He (3He-B). We identify the mode as an excited bound state of Cooper pairs, which is weakly bound with an excitation energy within 1% of the pair-breaking edge. On the basis of the selection rules for coupling of transverse sound to a collective mode in 3He-B, combined with the observation of acoustic birefringence near the collective mode frequency, we infer that the new mode is most likely a spin-triplet (S=1), f-wave pair exciton (orbital momentum L=3) with total angular momentum, J=4. The existence of a pair exciton with J=4 suggests an attractive, subdominant, f-wave pairing interaction in liquid 3He.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy levels of the collective modes, J±, of superfluid 3He-B that have been observed or predicted to couple to either longitudinal or transverse sound and their Zeeman splitting in a magnetic field in the limit of weak quasiparticle interactions.
Figure 2: Acoustic cavity response to pressure as a function of energy normalized to the gap energy, at 88 MHz and ≈550 μK in zero magnetic field.
Figure 3: Pressure and magnetic-field dependence of the 2Δ mode.

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. Abrikosov, A. A. & Gorkov, L. P. Superconducting alloys at finite temperatures. Sov. Phys. JETP 9, 220–221 (1959).

    Google Scholar 

  3. Anderson, P. W. Coherent excited states in the theory of superconductivity: Gauge invariance and the Meissner effect. Phys. Rev. 110, 827–835 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  4. Eilenberger, G. Transformation of Gorkov’s equation for type II superconductors into transport-like equations. Zeit. f. Phys. A 214, 195–213 (1968).

    Article  ADS  Google Scholar 

  5. Gorkov, L. P. On the energy spectrum on superconductors. Sov. Phys. JETP 7, 505–508 (1958).

    Google Scholar 

  6. Bohr, A., Mottelson, B. R. & Pines, D. Possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state. Phys. Rev. 110, 936–938 (1958).

    Article  ADS  Google Scholar 

  7. Pines, D. & Alpar, M. A. Superfluidity in neutron stars. Nature 316, 27–32 (1985).

    Article  ADS  Google Scholar 

  8. Zwierlein, M. W., Schunck, C. H., Stan, C. A., Raupach, S. M. F. & Ketterle, W. Formation dynamics of a fermion pair condensate. Phys. Rev. Lett. 94, 180401 (2005).

    Article  ADS  Google Scholar 

  9. Altmeyer, A. et al. Precision measurements of collective oscillations in the BEC-BCS crossover. Phys. Rev. Lett. 98, 040401 (2007).

    Article  ADS  Google Scholar 

  10. Hardy, F. & Huxley, A. D. p-wave superconductivity in the ferromagnetic superconductor URhGe. Phys. Rev. Lett. 94, 247006 (2005).

    Article  ADS  Google Scholar 

  11. Jerome, D. & Schulz, H. J. Organic conductors and superconductors. Adv. Phys. 31, 299–490 (1982).

    Article  ADS  Google Scholar 

  12. Marković, N., Christiansen, C., Mack, A. M., Huber, W. H. & Goldman, A. M. Superconductor-insulator transition in two dimensions. Phys. Rev. B 60, 4320–4328 (1999).

    Article  ADS  Google Scholar 

  13. Leggett, A. J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

    Article  ADS  Google Scholar 

  14. Vollhardt, D. & Wölfle, P. The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).

    Book  Google Scholar 

  15. Wölfle, P. Superfluid He-3 and unconventional superconductors. Physica C 317, 55–72 (1999).

    Article  ADS  Google Scholar 

  16. Halperin, W. P. & Varoquaux, E. in Helium Three (eds Halperin, W. P. & Pitaevskii, L. P.) (Elsevier, Amsterdam, 1990).

    Google Scholar 

  17. Davis, J. P., Choi, H., Pollanen, J. & Halperin, W. P. Collective modes and f-wave pairing interactions in superfluid 3He. Phys. Rev. Lett. 97, 115301 (2006).

    Article  ADS  Google Scholar 

  18. Davis, J. P., Choi, H., Pollanen, J. & Halperin, W. P. Magnetoacoustic spectroscopy in superfluid 3He-B. Phys. Rev. Lett. 100, 015301 (2008).

    Article  ADS  Google Scholar 

  19. Ashida, M., Hara, J. & Nagai, K. Propagation of zero sound in superfluid 3He-B under magnetic field. J. Low Temp. Phys. 105, 221–253 (1996).

    Article  ADS  Google Scholar 

  20. Ling, R., Saunders, J. & Dobbs, E. R. Ultrasonic spectroscopy of the J=1 collective mode in superfluid 3He-B. Phys. Rev. Lett. 59, 461–464 (1987).

    Article  ADS  Google Scholar 

  21. Movshovich, R., Varoquaux, E., Kim, N. & Lee, D. M. Splitting of the squashing collective mode of superfluid 3He-B by a magnetic field. Phys. Rev. Lett. 61, 1732–1735 (1988).

    Article  ADS  Google Scholar 

  22. Sauls, J. A. f-wave correlations in superfluid 3He. Phys. Rev. B 34, 4861–4864 (1986).

    Article  ADS  Google Scholar 

  23. Saunders, J., Ling, R., Wojtanowski, W. & Dobbs, E. R. Acoustic attenuation in superfluid 3He-B at low pressures. J. Low Temp. Phys. 79, 75–91 (1990).

    Article  ADS  Google Scholar 

  24. Wölfle, P. Collisionless collective modes in superfluid 3He. Physica B 90, 96–106 (1977).

    Article  Google Scholar 

  25. Batlogg, B. et al. Ultrasound studies of the heavy fermion superconductors UPt3, UBe13, and (U,Th)Be13 . Physica 135, 23–26 (1985).

    Google Scholar 

  26. Hirshfeld, P. J., Putikka, W. O. & Wölfle, P. Electromagnetic power absorption by collective modes in unconventional superconductors. Phys. Rev. Lett. 69, 1447–1450 (1992).

    Article  ADS  Google Scholar 

  27. Feller, J. R., Tsai, C. C., Ketterson, J. B., Smith, J. L. & Sarma, B. K. Evidence of electromagnetic absorption by collective modes in the heavy fermion superconductor UBe13 . Phys. Rev. Lett. 88, 247005 (2002).

    Article  ADS  Google Scholar 

  28. Golding, B. et al. Observation of a collective mode in superconducting UBe13 . Phys. Rev. Lett. 55, 2479–2482 (1985).

    Article  ADS  Google Scholar 

  29. Fay, D. & Tewordt, L. Collective order-parameter modes for hypothetical p-wave superconducting states in Sr2RuO4 . Phys. Rev. B 62, 4036–4041 (2000).

    Article  ADS  Google Scholar 

  30. Miura, M., Higashitani, S. & Nagai, K. Effect of order parameter collective mode on electronic Raman spectra of spin-triplet superconductor Sr2RuO4 . J. Phys. Soc. Japan 76, 034710 (2007).

    Article  ADS  Google Scholar 

  31. Blumberg, G. et al. Observation of Leggett’s collective mode in a multi-band MgB2 superconductor. Phys. Rev. Lett. 99, 227002 (2007).

    Article  ADS  Google Scholar 

  32. Littlewood, P. B. & Varma, C. M. Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 47, 811–814 (1981).

    Article  ADS  Google Scholar 

  33. Sooryakumar, R. & Klein, M. Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 45, 660–662 (1980).

    Article  ADS  Google Scholar 

  34. Fogelström, M., Rainer, D. & Sauls, J. A. Tunneling into current-carrying surface states of high-Tc superconductors. Phys. Rev. Lett. 79, 281–284 (1997).

    Article  ADS  Google Scholar 

  35. Sauls, J. A. & Serene, J. W. Coupling of order-parameter modes with l≥1 to zero sound in 3He-B. Phys. Rev. B 23, 4798–4801 (1981).

    Article  ADS  Google Scholar 

  36. Fishman, R. S. & Sauls, J. A. Response functions and collective modes of 3He in strong magnetic fields. Phys. Rev. B 33, 6068–6087 (1986).

    Article  ADS  Google Scholar 

  37. Vdovin, Y. A. in Application of Methods of Quantum Field Theory to Problems of Many Particles (ed. Alekseyeva, A. I.) (GOS ATOM ISDAT, Moscow, 1963).

    Google Scholar 

  38. Maki, K. Collective modes and spin waves in superfluid 3He-B. J. Low Temp. Phys. 24, 755–768 (1976).

    Article  ADS  Google Scholar 

  39. Nagato, Y., Yamamoto, M., Higashitani, S. & Nagai, K. Theory of transverse acoustic impedance of superfluid 3He. J. Low Temp. Phys. 149, 294–313 (2007).

    Article  ADS  Google Scholar 

  40. Moores, G. F. & Sauls, J. A. Transverse waves in superfluid 3He-B. J. Low Temp. Phys. 91, 13–37 (1993).

    Article  ADS  Google Scholar 

  41. Lee, Y., Haard, T. M., Halperin, W. P. & Sauls, J. A. Discovery of the acoustic Faraday effect in superfluid 3He-B. Nature 400, 431–433 (1999).

    Article  ADS  Google Scholar 

  42. Sauls, J. A. & Serene, J. W. Interaction effects on the Zeeman splitting of collective modes in superfluid 3He-B. Phys. Rev. Lett. 49, 1183–1186 (1982).

    Article  ADS  Google Scholar 

  43. Greywall, D. S. 3He specific heat and thermometry at millikelvin temperatures. Phys. Rev. B 33, 7520–7538 (1986).

    Article  ADS  Google Scholar 

  44. Rainer, D. & Serene, J. W. Free energy of superfluid 3He. Phys. Rev. B 13, 4745–4765 (1976).

    Article  ADS  Google Scholar 

  45. McKenzie, R. H. & Sauls, J. A. Comment on the coupling of zero sound to the J=1 modes of 3He-B. J. Low Temp. Phys. 90, 337–341 (1993).

    Article  ADS  Google Scholar 

  46. Schopohl, N. & Tewordt, L. Magnetic field dependence of zero-sound attenuation close to the pair-breaking edge in 3He-B due to J=1, J z=±1 collective modes. J. Low Temp. Phys. 57, 601–618 (1984).

    Article  ADS  Google Scholar 

  47. Fishman, R. S. Effects of the dipole interaction in superfluid 3He-B. Phys. Rev. B 36, 79–96 (1987).

    Article  ADS  Google Scholar 

  48. Fishman, R. S. & Sauls, J. A. Response functions and collective modes of 3He in strong magnetic fields: Determination of material parameters from experiments. Phys. Rev. B 38, 2526–2532 (1988).

    Article  ADS  Google Scholar 

  49. Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Science Foundation, DMR-0703656 and thank W. J. Gannon, M. J. Graf, Y. Lee, M. W. Meisel and B. Reddy for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. P. Halperin.

Supplementary information

Supplementary Information

Supplementary Information and Supplementary Figure 1 (PDF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J., Pollanen, J., Choi, H. et al. Discovery of an excited pair state in superfluid 3He. Nature Phys 4, 571–575 (2008). https://doi.org/10.1038/nphys969

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys969

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing