Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Principles and applications of compact laser–plasma accelerators

Abstract

Rapid progress in the development of high-intensity laser systems has extended our ability to study light–matter interactions far into the relativistic domain, in which electrons are driven to velocities close to the speed of light. As well as being of fundamental interest in their own right, these interactions enable the generation of high-energy particle beams that are short, bright and have good spatial quality. Along with steady improvements in the size, cost and repetition rate of high-intensity lasers, the unique characteristics of laser-driven particle beams are expected to be useful for a wide range of contexts, including proton therapy for the treatment of cancers, materials characterization, radiation-driven chemistry, border security through the detection of explosives, narcotics and other dangerous substances, and of course high-energy particle physics. Here, we review progress that has been made towards realizing such possibilities and the principles that underlie them.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Injection schemes in laser–plasma accelerators.
Figure 2: Three snapshots illustrating the dynamics of proton acceleration from the rear surface of a laser-irradiated thin target.
Figure 3: Principle of the betatron radiation produced in a wakefield cavity.
Figure 4: Time–space relationship characterizing energy deposition during the interaction of a relativistic electron beam (MeV) with liquid water.

References

  1. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    ADS  Article  Google Scholar 

  2. Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).

    ADS  Article  Google Scholar 

  3. Blue, B. E. et al. Plasma Wakefield acceleration of an intense positron beam. Phys. Rev. Lett. 90, 214801 (2003).

    ADS  Article  Google Scholar 

  4. Esarey, E. et al. Overview of plasma based accelerators concepts. IEEE Trans. Plasma Sci. 24, 252–288 (1996).

    ADS  Article  Google Scholar 

  5. Joshi, C. The development of laser- and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501 (2007).

    ADS  Article  Google Scholar 

  6. Mendonça, J. T. et al. Proton and neutron sources using terawatt lasers. Meas. Sci. Technol. 12, 1801–1812 (2001).

    ADS  Article  Google Scholar 

  7. Borghesi, M. et al. Fast ion generation by high intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412–439 (2006).

    Article  Google Scholar 

  8. Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: The highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    ADS  Article  Google Scholar 

  9. Mangles, S. et al. Mono-energetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535–538 (2004).

    ADS  Article  Google Scholar 

  10. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    ADS  Article  Google Scholar 

  11. Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    ADS  Article  Google Scholar 

  12. Leemans, W. P. et al. GeV electron beams from a centimetre scale accelerator. Nature Phys. 2, 696–699 (2006).

    ADS  Article  Google Scholar 

  13. Esarey, E. et al. Electron injection into plasma wake fields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997).

    ADS  Article  Google Scholar 

  14. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–740 (2006).

    ADS  Article  Google Scholar 

  15. Lifschitz, A. F. et al. Electron acceleration by colliding laser beams in plasmas. Preprint at <http://arxiv.org/abs/physics/0703020> (2007).

  16. Pukhov, A. & Gordienko, S. Bubble regime of wake field acceleration: Similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364, 623–633 (2006).

    ADS  Article  Google Scholar 

  17. Lu, W. et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. PRSTAB 10, 061301 (2007).

    Google Scholar 

  18. Malka, V. et al. Design of a compact GeV laser plasma accelerator. Nucl. Instrum. Methods Phys. Res. A 561, 310–313 (2006).

    ADS  Article  Google Scholar 

  19. Malka, V. et al. Staged concept of laser plasma acceleration toward multi-GeV electron beams. PRSTAB 9, 0913101 (2006).

    Google Scholar 

  20. Wilks, S. C. et al. Absorption of ultra intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992).

    ADS  Article  Google Scholar 

  21. Krushelnick, K. et al. Multi MeV ion production from high intensity laser interactions with underdense plasmas. Phys. Rev. Lett. 83, 737–780 (1999).

    ADS  Article  Google Scholar 

  22. Mora, P. Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002 (2003).

    ADS  Article  Google Scholar 

  23. Snavely, R. A. et al. Intense high energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

    ADS  Article  Google Scholar 

  24. Clark, E. L. et al. Energetic heavy ion and proton generation from ultraintense laser plasma interactions with solids. Phys. Rev. Lett. 85, 1654–1657 (2000).

    ADS  Article  Google Scholar 

  25. Pukhov, A. Three dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86, 3562–3565 (2001).

    ADS  Article  Google Scholar 

  26. Silva, L. O. et al. Proton shock acceleration in laser plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).

    ADS  Article  Google Scholar 

  27. Fuchs, J. et al. Comparison of laser ion acceleration from the front and rear surfaces of thin foils. Phys. Rev. Lett. 94, 045004 (2005).

    ADS  Article  Google Scholar 

  28. Fritzler, S. et al. Proton beams generated with high intensity lasers: Application to medical isotope production. Appl. Phys. Lett. 83, 3039–3042 (2003).

    ADS  Article  Google Scholar 

  29. Hegelich, M. et al. MeV ion jets from short pulse laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (2002).

    ADS  Article  Google Scholar 

  30. Cowan, T. E. et al. Ultra low emittance, multi MeV proton beams from a laser virtual cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004).

    ADS  Article  Google Scholar 

  31. Neely, D. et al. Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Appl. Phys. Lett. 89, 021502 (2006).

    ADS  Article  Google Scholar 

  32. Antici, P. et al. Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Phys. Plasmas 14, 030701 (2007).

    ADS  Article  Google Scholar 

  33. Ceccotti, T. et al. Proton acceleration with high-intensity, ultra-high-contrast laser pulses. Phys. Rev. Lett. 99, 185002 (2007).

    ADS  Article  Google Scholar 

  34. Schwoerer, H. et al. Laser–plasma acceleration of quasi-monoenergetic protons with microstructured targets. Nature 439, 445–448 (2006).

    ADS  Article  Google Scholar 

  35. Hegelich, B. M. et al. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006).

    ADS  Article  Google Scholar 

  36. Toncian, T. et al. Ultrafast laser driven microlens to focus and energy select Mega-electron volt protons. Science 312, 5772–5775 (2006).

    Article  Google Scholar 

  37. Kostyukov, I. et al. X-ray generation in an ion channel. Phys. Plasmas 10, 4818–4828 (2003).

    ADS  Article  Google Scholar 

  38. Rousse, A. et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser–plasma interaction. Phys. Rev. Lett. 93, 135005 (2004).

    ADS  Article  Google Scholar 

  39. Ta Phuoc, K. et al. Imaging electron trajectories in a laser wakefield cavity using betatron X-ray radiation. Phys. Rev. Lett. 97, 225002 (2006).

    ADS  Article  Google Scholar 

  40. Rousse, A. et al. Scaling for betatron X-ray radiation. Eur. Phys. J. D 45, 391–398 (2007).

    ADS  Article  Google Scholar 

  41. Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90 Thomson scattering: A tool for probing the structural dynamics of material. Science 274, 236–238 (1996).

    ADS  Article  Google Scholar 

  42. Schwoerer, H. et al. Thomson backscattered X-rays from laser accelerated electrons. Phys. Rev. Lett. 96, 014802 (2006).

    ADS  Article  Google Scholar 

  43. Hartemann, F. V. et al. Compton scattering X-ray sources driven by laser wakefield acceleration. Phys. Rev. ST Accel Beams 10, 011301 (2007).

    ADS  Article  Google Scholar 

  44. Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser–plasma wakefield accelerator. Nature Phys. 4, 130–133 (2008).

    ADS  Article  Google Scholar 

  45. Gruener, F. et al. Design considerations for table top laser based VUV and X-ray free electron lasers. Appl. Phys. B 86, 431–435 (2007).

    ADS  Article  Google Scholar 

  46. Rousse, A. et al. Femtosecond X-ray crystallography. Rev. Mod. Phys. 73, 17–31 (2001).

    ADS  Article  Google Scholar 

  47. DesRosiers, C. et al. 150–250 MeV electron beams in radiation therapy. Phys. Med. Biol. 45, 1781–1805 (2000).

    Article  Google Scholar 

  48. Yeboah, C. et al. Optimization of intensity modulated very high energy 50–250 MeV electron therapy. Phys. Med. Biol. 47, 1285–1301 (2002).

    Article  Google Scholar 

  49. Yeboah, C. & Sandison, G. A. Optimized treatment planning for prostate cancer comparing IMPT, VHEET and 15 MV IMXT. Phys. Med. Biol. 47, 2247–2261 (2002).

    Article  Google Scholar 

  50. Glinec, Y. et al. Radiotherapy with quasimonoenergetic electron beam from laser–plasma interaction. Med. Phys. 33, 155–162 (2006).

    Article  Google Scholar 

  51. Dubrova, Y. E. et al. Transgenerational mutation by radiation. Nature 405, 37–40 (2002).

    ADS  Article  Google Scholar 

  52. Von Sonntag, C. (ed.) Free-Radical-Induced DNA Damage and its Repair (Springer, Heidelberg, 2006).

  53. Wroe, J. et al. Nanodosimetric cluster distributions of therapeutic proton beams. IEEE Trans. Nucl. Sci. 53, 532–538 (2006).

    ADS  Article  Google Scholar 

  54. Malka, V. et al. Practicability of protontherapy using compact laser systems. Med. Phys. 31, 1587–1592 (2004).

    Article  Google Scholar 

  55. Fourkal, E. et al. Intensity modulated radiation therapy using laser-accelerated protons: A Monte Carlo dosimetric study. Phys. Med. Biol. 48, 3977–4000 (2003).

    Article  Google Scholar 

  56. Ledingham, K. W. D. et al. Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 1107–1110 (2003).

    ADS  Article  Google Scholar 

  57. Lefebvre, E. et al. Numerical simulation of isotope production for positron emission tomography with laser-accelerated ions. J. Appl. Phys. 100, 113308 (2006).

    ADS  Article  Google Scholar 

  58. Brozek-Pluska, B. et al. Direct observation of elementary radical events: Low and high-energy radiation femtochemistry in solutions. Radiat. Phys. Chem. 72, 149–157 (2005).

    ADS  Article  Google Scholar 

  59. Gauduel, Y. et al. Femtosecond relativistic electron beam triggered early bioradical events. SPIE Femtosecond Laser Appl. Biol. 5463, 86–96 (2004).

    ADS  Article  Google Scholar 

  60. Gauduel, Y. et al. Real-time probing of radical events with sulfide molecules. SPIE Genetically Eng. Opt. Probes Biomed. Appl. IV 6449, E1–E12 (2007).

    Google Scholar 

  61. Grosswendt, B. Nanodosimetry, from radiation physics to radiation biology. Radiat. Prot. Dosim. 115, 1–9 (2005).

    Article  Google Scholar 

  62. Patel, P. K. et al. Isochoric heating of solid density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004 (2003).

    ADS  Article  Google Scholar 

  63. Borghesi, M. et al. Electric field detection in laser plasma interaction experiments via imaging technique. Phys. Plasmas 9, 2214 (2002).

    ADS  Article  Google Scholar 

  64. Romagnani, L. et al. Dynamics of electric fields driving the laser acceleration of multi MeV protons. Phys. Rev. Lett. 95, 195001 (2005).

    ADS  Article  Google Scholar 

  65. Le Pape, S. et al. Novel diagnostic of low-Z shock compressed material. High Energ. Density Phys. 2, 1–6 (2006).

    ADS  Article  Google Scholar 

  66. Glinec, Y. et al. High resolution γ-ray radiography produced by a laser–plasma driven electron source. Phys. Rev. Lett. 94, 025003 (2005).

    ADS  Article  Google Scholar 

  67. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    ADS  Article  Google Scholar 

  68. Katsouleas, T. Electrons hang ten on laser wake. Nature 431, 515–516 (2004).

    ADS  Article  Google Scholar 

  69. Gerstner, E. Extreme light. Nature 446, 16–18 (2007).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge R. Ferrand, T. Fuchs, L. Silva, H. Videau and G. Mourou for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Malka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malka, V., Faure, J., Gauduel, Y. et al. Principles and applications of compact laser–plasma accelerators. Nature Phys 4, 447–453 (2008). https://doi.org/10.1038/nphys966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys966

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing