
THESIS

The human mind can easily 
be drawn into incorrect 
conclusions...

The proper analysis of data is perhaps not 
the most exciting topic in physics, but it 
is among the most important. Aesthetic 
considerations and preconceptions 
profitably drive the creative side of science, 
especially the invention of novel theories. 
But when it comes to judging which ideas 
correspond best with reality, it’s hard data 
that count most. It’s through data that 
science largely manages to push wishful 
thinking to the sidelines, and, in so far as 
possible, to discover reality as it is.

Of course, testing theories with data 
isn’t actually so easy. Different experiments 
often contradict one another. A devoted 
theorist can always doubt the results 
of an experiment and go on believing 
(sometimes correctly). Moreover, not all 
data are good or conclusive data. Although 
students still learn that Einstein’s general 
theory of relativity found confirmation in 
Arthur Eddington’s 1919 observations of 
a total eclipse of the Sun, Eddington’s data 
were in fact not accurate enough, and his 
results, at the time, equivocal.

High-quality data are rarely in surplus, 
and the implications of sparse data by no 
means obvious. Indeed, a recent analysis of 
the practice of fitting curves to data suggests 
that when the data are in short supply, 
the fitting can be fraught with problems. 
Especially in the context of empirical 
studies aiming to pin down the probability 
distributions of natural phenomena, it seems 
that wishful thinking can easily slip in, aided 
no doubt by the seemingly self-evident 
legitimacy of the reasoning involved. The 
problems seem particularly pronounced 
for studies purporting to find evidence for 
scale-free or scale-invariant power laws.

Perhaps the most famous power 
law in science is the Gutenberg–Richter 
Law of geophysics, first described by 
Beno Gutenberg and Charles Richter 
more than 50 years ago. It expresses the 
empirical finding that the probability density 
for earthquakes releasing total energy 
E falls off simply as 1/E2; hence, there is 
apparently a lack of any inherent scale for 
earthquakes ranging over many orders of 
magnitude. Of course, this is only one of 
thousands of similar relations proposed, 
especially in recent years, for phenomena 
in physics, biology and elsewhere — for the 
distribution of the intensities of solar flares, 
of fluctuations in bird populations, of the 
number of links on web pages, and so on.

In most cases, these relations have 
been derived from empirical data using a 

simple analytical recipe. The routine is first 
to bin the data, counting up the number of 
instances in each small range. This gives a 
histogram reflecting an empirical estimate 
of the probability density. As a power law 
implies a linear relationship between the 
logarithms of the probability density and 
the variable in question, a straight line on 
a log–log plot, at least over a range, would 
seem to reflect a power law.

So have many authors asserted over 
several decades, often enhancing their 
claim with regression analysis showing 
that a straight line is indeed the best fit. 
It seems simple enough, and it would be, 
given an infinite amount of data. But data 

are never infinite, and with finite data, as 
Aaron Clauset and colleagues have shown, 
the story is considerably more complex 
(arXiv.org/abs/0706.1062v1; 2007).

As they point out, linear regression is 
actually prone to serious errors. Much of the 
problem stems from the inapplicability of 
standard regression analysis, which assumes 
independent gaussian-distributed errors 
for the data in different bins; this may be 
valid for the initial data, but it isn’t once the 
data have been transformed logarithmically. 
This problem and other related issues, they 
suggest, have probably introduced erroneous 
conclusions into the scientific literature 
through the unquestioning use of this 
method and the modern ease of analysing 
data with standard statistical packages.

Fortunately, they argue, far better 
analysis requires only a modest increase 
in statistical sophistication. The first 
logical step is to assess how likely it is, if 
one assumes that the underlying physics 
really does imply a power law, that one 
would find the actual empirical data. This 

calculation is akin to finding a p-value 
in routine statistics — expressing the 
likelihood that observations couldn’t have 
been generated by random chance — but 
is a little more involved in this case. That’s 
because, ordinarily, one knows the 
distribution from which data are drawn, 
whereas that’s not the case if one is trying 
to assess what the distribution might be. 
Nevertheless, Clauset et al. give a relatively 
simple algorithm for doing this based 
on the Kolmogorov–Smirnov statistic 
(measured as the greatest difference 
between the cumulative distribution 
functions for the empirical data and the 
hypothetical power law).

If the hypothesis fails this test, then 
the data are very unlikely to have come 
from a power law. If it passes, however, 
that doesn’t mean the data do come from a 
power law. The second logical stage is then 
to compare the goodness of fit between 
the power law and other alternatives, such 
as an exponential, for example, or some 
other physically motivated distribution. 
If the power law again comes out ahead, 
then it can legitimately be offered as a valid 
interpretation of the data.

This may all seem rather pedantic 
and uninspiring, yet its importance 
becomes evident from the re-analyses by 
Clauset et al. of a number of prominent 
data sets for which power laws have 
previously been suggested. Looking 
again at these 24 real-world data sets, the 
results show varying degrees of support 
for the power-law interpretation. Some 
data, for forest fires and the distribution 
of web links, for example, are moderately 
well fit by power laws (although other 
mathematical forms, such as stretched 
exponential or log-normal, actually fit even 
better); other data, such as the distribution 
of wealth, are not. The analysis finds 
statistical support for the Gutenberg–
Richter law of geophysics, although with an 
exponential cut-off at large energies.

Overall, this analysis clearly shows how 
the human mind can easily be drawn into 
incorrect conclusions, in this case by the 
seemingly sensible regression technique 
to log-transformed data. The point to take 
home, as Clauset suggests, is that “statistical 
methods necessarily should and do say 
relatively narrow things about data and our 
theories.” Data analysis isn’t exciting, even 
at the best of times. But it’s an invaluable 
defence against wishful thinking.
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