Probing quantum and thermal noise in an interacting many-body system

Abstract

The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian to Gumbel type, in excellent agreement with theoretical predictions on the basis of the Luttinger-liquid formalism. We present the first experimental observation of quasi-long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up and observed interference patterns.
Figure 2: Analysis of the observed interference patterns.
Figure 3: Length dependence of the average contrast.
Figure 4: Distribution functions of the measured interference contrasts for different lengths L.

References

  1. 1

    Wheeler, J. & Zurek, W. Quantum Theory and Measurement (Princeton Univ. Press, Princeton, 1984).

  2. 2

    Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, Berlin, 2004).

  3. 3

    Levitov, L. S. in Quantum Noise in Mesoscopic Systems (ed. Nazarov, Yu. V.) (Kluwer, Dordrecht, 2007).

  4. 4

    Sukhorukov, E. V. et al. Conditional statistics of electron transport in interacting nanoscale conductors. Nature Phys. 3, 243–247 (2007).

  5. 5

    Samuelsson, P., Sukhorukov, E. V. & Büttiker, M. Two-particle Aharonov–Bohm effect and entanglement in the electronic Hanbury Brown–Twiss setup. Phys. Rev. Lett. 92, 026805 (2004).

  6. 6

    Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

  7. 7

    Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultra-cold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

  8. 8

    Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

  9. 9

    Rom, T. et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733–736 (2006).

  10. 10

    Greiner, M., Regal, C. A., Stewart, J. T. & Jin, D. S. Probing pair-correlated fermionic atoms through correlations in atom shot noise. Phys. Rev. Lett. 94, 110401 (2005).

  11. 11

    Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

  12. 12

    Schellekens, M. et al. Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 638–651 (2005).

  13. 13

    Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature 445, 402–405 (2007).

  14. 14

    Donner, T. et al. Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007).

  15. 15

    Richard, S. et al. Momentum spectroscopy of 1d phase fluctuations in Bose–Einstein condensates. Phys. Rev. Lett. 91, 010405 (2003).

  16. 16

    Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

  17. 17

    Polkovnikov, A., Altman, E. & Demler, E. Interference between independent fluctuating condensates. Proc. Natl Acad. Sci. USA 103, 6125–6129 (2006).

  18. 18

    Gritsev, V., Altman, E., Demler, E. & Polkovnikov, A. Full quantum distribution of contrast in interference experiments between interacting one dimensional Bose liquids. Nature Phys. 2, 705–709 (2006).

  19. 19

    Dettmer, S. et al. Observation of phase fluctuations in elongated Bose–Einstein condensates. Phys. Rev. Lett. 87, 160406 (2001).

  20. 20

    Esteve, J. et al. Observations of density fluctuations in a very elongated Bose gas: From the ideal gas to the quasi-condensate regime. Phys. Rev. Lett. 96, 130403 (2006).

  21. 21

    Tolra, B. L. et al. Observation of reduced three-body recombination in a correlated 1d degenerate Bose gas. Phys. Rev. Lett. 92, 190401 (2004).

  22. 22

    Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

  23. 23

    Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

  24. 24

    Schumm, T. et al. Matter wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

  25. 25

    Hofferberth, S., Lesanovsky, I., Fischer, B., Verdu, J. & Schmiedmayer, J. Radio-frequency dressed state potentials for neutral atoms. Nature Phys. 2, 710–716 (2006).

  26. 26

    Lesanovsky, I. et al. Adiabatic radio frequency potentials for the coherent manipulation of matter waves. Phys. Rev. A 73, 033619 (2006).

  27. 27

    Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: From wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

  28. 28

    Fortagh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–290 (2007).

  29. 29

    Petrov, D. S., Gangardt, D. M. & Shlyapnikov, G. V. Low-dimensional trapped gases. J. Phys. IV 116, 5–44 (2004).

  30. 30

    Bouchoule, I., Kheruntsyan, K. V. & Shlyapnikov, G. V. Interaction-induced crossover versus finite-size condensation in a weakly interacting trapped one-dimensional Bose gas. Phys. Rev. A 75, 031606(R) (2007).

  31. 31

    Imambekov, A., Gritsev, V. & Demler, E. in Proc. 2006 Enrico Fermi Summer School on Ultracold Fermi Gases (eds Inguscio, M., Ketterle, W. & Salomon, C.) (IOS Press, Amsterdam, 2007).

  32. 32

    Castin, Y. & Dalibard, J. Relative phase of two Bose–Einstein condensates. Phys. Rev. A 55, 4330–4337 (1997).

  33. 33

    Javanainen, J. & Wilkens, M. Phase and phase diffusion of a split Bose–Einstein condensate. Phys. Rev. Lett. 78, 4675–4678 (1997).

  34. 34

    Leggett, A. J. Bose–Einstein condensation in the alkali gases. Rev. Mod. Phys. 73, 307–356 (2001).

  35. 35

    Popov, V. N. Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Dordrecht, 1983).

  36. 36

    Haldane, F. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981).

  37. 37

    Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, Oxford, 2003).

  38. 38

    Cazalilla, M. Bosonizing one-dimensional cold atomic gases. J. Phys. B 37, S1–S47 (2004).

  39. 39

    Polkovnikov, A. Shot noise of interference between independent atomic systems. Europhys. Lett. 78, 10006–10010 (2007).

  40. 40

    Gumbel, E. J. Statistics of Extremes (Columbia Univ. Press, New York, 1958).

  41. 41

    Imambekov, A., Gritsev, V. & Demler, E. Mapping of Coulomb gases and sine–Gordon models to statistics of random surfaces. Preprint at <http://arxiv.org/abs/cond-mat/0612011> (2006).

  42. 42

    Belzig, W., Schroll, C. & Bruder, C. Density correlations in ultracold atomic Fermi gases. Phys. Rev. A 75, 063611 (2007).

  43. 43

    Eckert, K. et al. Quantum non-demolition detection of strongly correlated systems. Nature Phys. 4, 50–54 (2008).

  44. 44

    Cherng, R. & Demler, E. Quantum noise analysis of spin systems realized with cold atoms. New J. Phys. 9, 7 (2007).

  45. 45

    Eckert, K., Zawitkowski, L., Sanpera, A., Lewenstein, M. & Polzik, E. S. Quantum polarization spectroscopy of ultracold spinor gases. Phys. Rev. Lett. 98, 100404 (2007).

  46. 46

    Wildermuth, S. et al. Optimized magneto-optical trap for experiments with ultracold atoms near surfaces. Phys. Rev. A 69, 030901 (2004).

  47. 47

    Hofferberth, S., Fischer, B., Schumm, T., Schmiedmayer, J. & Lesanovsky, I. Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation. Phys. Rev. A 76, 013401 (2007).

  48. 48

    Olshanii, M. Atomic scattering in presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).

  49. 49

    Lieb, E. & Liniger, W. Exact analysis of an interacting Bose gas. i. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963).

  50. 50

    Caux, J.-S., Calabrese, P. & Slavnov, N. A. One-particle dynamical correlations in the one-dimensional Bose gas. J. Stat. Mech. 0701, P008 (2007).

Download references

Acknowledgements

We acknowledge financial support from the European Union through the contracts MRTN-CT-2003-505032 (Atom chips), Integrated Project FET/QIPC ‘SCALA’, FWF, NSF, Harvard-MIT CUA, AFOSR, Swiss NSF and MURI. We thank S. Groth for fabricating the atom chip used in the experiments and D. A. Smith for critical reading of the manuscript.

Author information

S.H. and J.S. collected the data presented in this article. A.I., V.G., and E.D. provided the theoretical models used. All authors contributed to analysis and interpretation of the data and helped in editing the manuscript.

Correspondence to J. Schmiedmayer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hofferberth, S., Lesanovsky, I., Schumm, T. et al. Probing quantum and thermal noise in an interacting many-body system. Nature Phys 4, 489–495 (2008). https://doi.org/10.1038/nphys941

Download citation

Further reading