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Dense coding is arguably the protocol that launched the field
of quantum communication1. Today, however, more than a
decade after its initial experimental realization2, the channel
capacity remains fundamentally limited as conceived for photons
using linear elements. Bob can only send to Alice three
of four potential messages owing to the impossibility of
carrying out the deterministic discrimination of all four Bell
states with linear optics3,4, reducing the attainable channel
capacity from 2 to log2 3 ≈ 1.585 bits. However, entanglement
in an extra degree of freedom enables the complete and
deterministic discrimination of all Bell states5–7. Using pairs of
photons simultaneously entangled in spin and orbital angular
momentum8,9, we demonstrate the quantum advantage of the
ancillary entanglement. In particular, we describe a dense-coding
experiment with the largest reported channel capacity and, to
our knowledge, the first to break the conventional linear-optics
threshold. Our encoding is suited for quantum communication
without alignment10 and satellite communication.

The first realization of quantum dense coding was optical,
using pairs of photons entangled in polarization2. Dense coding
has since been realized in various physical systems and broadened
theoretically to include high-dimension quantum states with
multiparties11, and even coding of quantum states12. The protocol
extension to continuous variables13,14 has also been experimentally
explored optically, using superimposed squeezed beams15. Other
physical approaches include a simulation in nuclear magnetic
resonance with temporal averaging16, and an implementation
with atomic qubits on demand without postselection17. However,
photons remain the optimal carriers of information given their
resilience to decoherence and ease of creation and transportation.

Quantum dense coding was conceived1 such that Bob could
communicate 2 bits of classical information to Alice with the
transmission of a single qubit, as follows. Initially, each party holds
one spin-1/2 particle of a maximally entangled pair, such as one
of the four Bell states. Bob then encodes his 2-bit message by
applying one of four unitary operations on his particle, which he
then transmits to Alice. Finally, Alice decodes the 2-bit message by
discriminating the Bell state of the pair.

Alice’s decoding step, deterministically resolving the four Bell
states, is known as Bell-state analysis (BSA). Although in principle
attainable with nonlinear interactions, such BSA with photons is
very difficult to achieve with present technology, yielding extremely
low efficiencies and low discrimination fidelities18. Therefore,
current fundamental studies and technological developments

demand the use of linear optics. However, for quantum
communication, standard BSA with linear optics is fundamentally
impossible3,4. At best, only two Bell states can be discriminated; for
quantum communication, the other two are considered together
for a three-message encoding. Consequently, the maximum
channel capacity of this conventional optical dense coding is
log23≈1.585 bits. Although there are probabilistic approaches that
can distinguish all four Bell states (which would be necessary to
achieve the fundamental channel capacity of 2), these are at best
successful 50% of the time19, so have a net channel capacity of at
most 1 per photon.

Entanglement in an extra degree of freedom (DOF) of the
pair, hyperentanglement20, enables full BSA with linear optics5,6.
In this case, because Bob only encodes information in one
DOF (the auxiliary DOF is unchanged), a dense-coding protocol
proceeds under the same encoding conditions as in the original
proposal1. Although hyperentanglement-assisted BSA (HBSA) on
polarization states has been reported with ancillas entangled in
energy–time6 and linear momentum7, no advantage for quantum
information or fundamental physics was shown; experiments
thus far have been limited to a channel capacity of less than
1.18(3) bits6, substantially less than is possible even without
hyperentangled resources.

Using pairs of photons entangled in their spin and orbital
angular momentum (OAM) in a HBSA with high stability and
high detection fidelity, we realize a dense-coding experiment with
a channel capacity that exceeds the threshold to beat conventional
linear-optics schemes. In our scheme, Alice and Bob are provided
with pairs of photons simultaneously entangled in their spin and
±1-OAM in a state of the form

1

2
(|HH〉+|VV 〉)⊗ (| 	�〉+| �	〉). (1)

Here, H (V ) represents the horizontal (vertical) photon
polarization and 	 (�) represents the paraxial spatial modes
(Laguerre–Gauss) carrying +h̄ (−h̄) units of OAM21. Bob encodes
his message by applying one of four unitary operations on the
spin of his photon of this hyperentangled pair: (1) the identity,
(2) V → −V , (3) H ↔ V or (4) V → −V and H ↔ V . Such
operations transform the state in equation (1) into

Φ±

spin ⊗Ψ+

orbit, and Ψ±

spin ⊗Ψ+

orbit, (2)
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Figure 1 Spin–orbit Bell-state analyser. A photon in a spin–orbit Bell state incident from the left is first split according to its ±1-OAM content; its ±1-OAM components are
converted to 0-OAM and combined on a PBS for a spin-controlled orbit-CNOT gate. The photon is then filtered by a single-mode fibre (SMF) and finally routed to a unique
detector (photon-counting avalanche photodiode).

where the spin and orbit Bell states are defined as

Φ±

spin ≡ (|HH〉±|VV 〉)/
√
2,

Ψ±

spin ≡ (|HV 〉±|VH〉)/
√
2,

Ψ+

orbit ≡ (| 	�〉+| �	〉)/
√
2.

We designed a HBSA scheme (inspired by ref. 22) enabling Alice
to discriminate the four states in equation (2). In this scheme, the
polarization BSA relies on the observation that the states resulting
from Bob’s encoding can be rewritten as superpositions of the
single-photon Bell states of spin andOAM, or spin–orbit Bell states:

φ±
≡

1
√
2
(|H 	〉±|V �〉),

ψ±
≡

1
√
2
(|H �〉±|V 	〉).

On this basis, the states Alice analyses have the form

Φ±

spin ⊗Ψ+

orbit =
1

4

(
φ+

1 ⊗ψ∓

2 +φ−

1 ⊗ψ±

2

+ ψ+

1 ⊗φ±

2 +ψ−

1 ⊗φ∓

2

)
,

Ψ±

spin ⊗Ψ+

orbit =
1

4

(
φ+

1 ⊗φ∓

2 +φ−

1 ⊗φ±

2

+ ψ+

1 ⊗ψ±

2 +ψ−

1 ⊗ψ∓

2

)
.

This arrangement shows that each hyperentangled state is a unique
superposition of four of the sixteen possible combinations of two-
photon spin–orbit Bell states. Therefore, Alice can decode Bob’s
message by carrying out spin–orbit BSA locally on each photon.

We implement the spin–orbit BSA with a novel interferometric
apparatus consisting of a ±1-OAM splitter and polarizing beam
splitters (PBSs), as shown in Fig. 1. The first splitter combines the
action of a binary plane-wave phase grating21 and single-mode
fibres. The grating transforms an incoming photon in the state
|	〉 (|�〉) into a gaussian beam with no OAM in the +1 (−1)
diffraction order (for a splitter that preserves the photon’s OAM,
see ref. 21). Subsequently filtering the first diffraction orders with
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Figure 2 Experimental set-up for dense coding with spin–orbit encoded
photons. Acting on photon 2 of a hyperentangled pair, Bob encodes his message by
using the liquid crystals (LCs) to apply the phases indicated in the table; at the same
time (or earlier) Alice carries out spin–orbit BSA on photon 1. Later—the upward
direction suggests time progression—Alice uses a spin–orbit BSA on photon 2, and
the result from the measurement on photon 1, to decode Bob’s message. The liquid
crystals on the path of photon 1 applied no phase during the dense-coding
experiment, but were used along with Bob’s liquid crystals to characterize the
polarization states of the hyperentangled source by quantum state tomography. The
liquid-crystal optic axes are perpendicular to the incident beams; LC@45◦ (LC@0◦ )
is oriented at 45◦ (0◦ ) from the horizontal polarization direction. BBOs: β-barium
borate nonlinear crystals; CW: continuous-wave.
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Figure 3 Experimental results of hyperentanglement-assisted dense coding. Coincidence counts detected by Alice’s HBSA for each message (state) sent by Bob. The
error bars (shown as additional squares at the top of each column) represent ±1 standard deviations, deduced from poissonian counting statistics. The state-discrimination
SNRs, which compare the sum of the four rates corresponding to the actual state to the sum of the other twelve registered rates, are SNRΦ+ = 19.9(8), SNRΦ− = 27(1),
SNRΨ+ = 13.7(5) and SNRΨ− = 16.4(6).

single-mode fibres, we effectively split an incoming photon into
its ±1-OAM components. By merging these diffraction orders on
a PBS, we carry out a spin-controlled NOT gate over the photon
OAM. In Fig. 1, the states ψ± (φ±) exit on the top (bottom)
output port of the PBS. Followed by measurements in the diagonal
basis, shown in Fig. 1 as PBS@45◦, the desired measurement in the
single-photon Bell-state basis is accomplished. Further birefringent
elementsmake this device a universal unitary gate for single-photon
two-qubit states, in analogy with the device for polarization–linear
momentum states in ref. 23.

Each step in the dense-coding protocol corresponds to a distinct
experimental stage in Fig. 2: a hyperentanglement source, Bob’s
encoding components and Alice’s HBSA. The hyperentanglement
source is realized via spontaneous parametric downconversion in a
pair of nonlinear crystals (see the Methods section). The generated
photon pairs are entangled in polarization, OAM and emission
time9. In particular, we use a subspace of the produced states that
was shown to have a state overlap or fidelity of 97% with the state
in equation (1). Next, Bob encodes his message in the polarization
state by applying birefringent phase shifts with a pair of liquid
crystals, as shown in Fig. 2. Finally, Alice carries out HBSA using
two of the spin–orbit Bell-state analysers shown in Fig. 1, one for
each photon (see the Methods section).

We characterize our dense-coding implementation by switching
between the four states for equal intervals, and measuring all
output states of the HBSA. The results of these measurements are
coincidence counts for each input state, as shown in Fig. 3. From
this data, we can determine the conditional detection probabilities
that Alice detects each message Φ± and Ψ± that Bob sent, for
example, the message Φ+. The probabilities shown in Fig. 4 were
calculated by comparing the sum of the four rates corresponding
to each detected message over the sum of all sixteen rates for the
sent message. The average probability of success was 94.8(2)% (all
reported errors from Monte Carlo simulations).

A better figure of merit for a quantum dense-coding
implementation is the channel capacity, because it characterizes the
exponential growth of the maximum number of distinguishable
signals for a given number of uses of the channel (see the
Methods section). From the conditional detection probabilities, we
obtain a channel capacity of 1.630(6) bits with a probability of
sending each state of P(Φ+) = 0.26, P(Φ−) = 0.26, P(Ψ+) = 0.24

and P(Ψ−) = 0.24. This exceeds the 1.585 channel capacity
threshold for conventional linear-optics implementations. The
channel capacity drifted by no more than one standard deviation
between experimental runs, demonstrating the high stability of
the implementation.

The experimental channel capacity is nevertheless smaller
than the maximum attainable (2 bits), owing to imperfections
in the alignment, input states and components. By characterizing
each imperfection and modelling the gates and measurement, we
estimated their effect on the channel capacity (see Supplementary
Information, Part II). Considering all mentioned imperfections
(see the Methods section) and their spread in a Monte Carlo
simulation, the predicted channel capacity of 1.64(2) bits
agrees with the measured channel capacity of 1.630(6) bits.
The polarization and spatial-mode states can be improved by
spatially compensating the angle-dependent phase24, using a forked
hologram with a smaller diffraction angle to decrease wavelength
dispersion (a potential source of alignment imbalances), and
obtaining crystals with a smaller wedge. The deleterious effect of the
PBS crosstalk can be reduced by adding extra phase-compensation
plates inside the interferometers, and can potentially be eliminated
altogether by adding appropriate birefringent beam displacers after
each PBS.

Above, Bob encoded two qubits in the form of spin–orbit Bell
states by acting only on the spin DOF. However, more generally he
could also apply one of four unitaries in the ±1-OAM subspace
and encode four qubits. The state of the pair of photons then
becomes a product of Bell states, 16 in total. In principle, if Alice
could discriminate all of these ‘hyper-Bell’ states, up to 4 bits
could be transmitted per photon. We have investigated the limits
for unambiguously distinguishing these Bell-like states, and have
found that the optimal one-shot discrimination scheme is to group
the 16 states into 7 distinguishable classes25. The optimal analysis
can be achieved by the Kwiat–Weinfurter scheme5, with photon-
number resolving detectors, giving a maximum channel capacity
of log27≈ 2.81 bits. If we modify the present scheme, we can also
implement an unambiguous discrimination of all 16 Bell states with
two identical copies25.

In conclusion, we have beaten a fundamental limit on the
channel capacity for standard dense coding using only linear optics.
A number of features make our HBSA efficient and reliable. First,
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Figure 4 Conditional detection probabilities beating the channel capacity limit
for standard dense coding with linear optics. a, Given that Bob encoded the four
states indicated, Alice infers the state transmitted with the probabilites shown
(calculated from data in Fig. 3). Her average success probability is 94.8(2)%. The
uncertainty in each probability is less than 0.2%. These results imply a channel
capacity (CC) of 1.630(6) bits, above the standard linear-optics limit of 1.585.
b, Experimentally reported channel capacities as a function of their conditional
detection average success probability. The error bars represent the statistical error
of ±1 standard deviations. The domains of achievable channel capacity for both
three- and four-state encodings are shown for reference (see
Supplementary Information, Part I).

hyperentanglement offers advantages in the source, logic gates and
detection side. Quantum logic between qubits encoded on different
DOFs is much more easily implemented than when using different
photons26,27. From the source side, more quantum information is
available per photon, particularly with the energy–time and spatial-
mode DOF (for example, ref. 28). In the detection side, compared
with multiphoton approaches, higher efficiency is achieved because
only one pair of photons is detected. Second, because our HBSA
requires only local measurements, Alice can measure one of the
photons and store the classical result of her measurement until
Bob sends his photon (she does not require a quantum memory).
Finally, the photon’s polarization and ±1-OAM constitute a
robust encoding as they enable quantum communication without
alignment10 as well as other landmark advances for quantum
information8. Furthermore, by using paraxial beams as the ancillary
DOF, the scheme is free of tight source-to-detector requirements
such as interferometric stability7 or perfect indistiguishability for
Hong–Ou–Mandel interference6. However, OAM single-photon
and entangled states easily decohere by atmospheric turbulence29,30,
limiting their likely communication applications to satellite-to-
satellite transmissions.

METHODS

The hyperentanglement source is realized by directing 120mW of 351 nm
light from a continuous-wave Ar+ laser into two contiguous β-barium borate
nonlinear crystals with optic axes aligned in perpendicular planes9. Type-I
degenerate 702 nm photons in a 3.0◦ half-opening angle cone are produced by
phase-matching each 0.6-mm-thick crystal. In the spin and ±1 OAM subspace,
a two-fold coincidence rate of five detected pairs per second is determined by a
10 ns coincidence window and interference filters with 1lFWHM = 5 nm.

In our HBSA implementation, each PBS@45◦ and its two outputs in
the spin–orbit BSA (Fig. 1) were replaced by a dichroic polarizer oriented
at either 45◦ or −45◦ and a single output; Alice’s HBSA thus acquires all
spin–orbit BSA outputs from four polarizer settings. With the continuous-
wave source, Alice cycles through the four polarizer settings, and for each
polarizer setting Bob encodes the four messages, each for 150 s. During the
measurement, no active stabilization or realignment was done on the source,
spin–orbit BSA interferometers or coupling optics. The HBSA polarizers and
liquid crystals were quickly set with computer-controlled rotation stages and
liquid-crystal controllers.

The wavelength-dependent voltage applied to each liquid crystal was
independently calibrated to produce a birefringent phase difference of 0 or π
with a diode laser operated at 699 nm (Hitachi HL-6738MG, driven at 140mA
and 80 ◦C); the same laser was used to align the ±1-OAM splitter. The binary
forked holograms were silver-halide emulsion gratings with 33% diffraction
efficiency into the first order (more efficient schemes are described in ref. 21).
The same holographic plate included spatial-mode tomography patterns, which
in conjunction with the liquid crystals were used for state reconstruction9. The
spurious phase on reflection on the PBS was compensated with a waveplate
in each output port of the PBS for both spin–orbit Bell-state analysers. The
state-discrimination signal-to-noise ratio (SNR) varied between states owing
to mode-coupling imbalance in the spin–orbit BSA, PBS crosstalk and slight
offsets in the liquid crystal calibrations.

We characterized the source polarization state Φ−

spin by quantum
state tomography in the | 	�〉 and | �	〉 OAM subspaces9 (using liquid
crystals shown in Fig. 2 and PBSs of each spin–orbit BSA shown in Fig. 1).
Considering all combinations of signature detectors, we measured an average
degree of entanglement, or tangle, of T = 96.7(8)% and a mixture or linear
entropy of SL = 2.0(4)%. If such high-quality polarization states were exactly
the same for each combination of signature detectors, the decrease in the
channel capacity would be only 0.006 bits. However, small differences in the
coupled state between each combination of detectors (expressed above as
uncertainty) result in a channel capacity decrease of 0.09(2) (see Supplementary
Information, Part II). The OAM state was also tomographically reconstructed in
the |HH〉 and |VV 〉 polarization subspaces9, measuring an average T =91(3)%
and SL = 6(2)%, yielding a channel capacity decrease of 0.20(3) bits. The PBS
crosstalk (0.5% for H , 1.0% for V ) further decreases the channel capacity by
0.10(1) bits. Finally, accidental coincidences (5 in 150 s) reduce channel capacity
by 0.02 bits.

CHANNEL CAPACITY
The capacity of a noisy channel is given by CC=maxp(x)H(X : Y ), where x
is in the space of signals that can be transmitted X, H(X : Y ) is the mutual
information of X and the space of received signals Y and the maximum is
taken over all input distributions p(x). H(X : Y ) is a function of p(x) and the
conditional detection distribution p(y|x) of receiving y given that x was sent:

H(X : Y ) =

∑
y∈Y

∑
x∈X

p(x)p(y|x) log
p(y|x)∑

x∈X p(y|x)p(x)
.

In our experiment, a uniform probability of transmission gives a mutual
information of 1.629(6) bits, negligibly smaller than the channel capacity owing
to the nearly balanced conditional probabilities, that is, there is little to be
gained by sending some states more frequently.
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