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Soon after the theoretical proposal of the intrinsic spin Hall
effect1,2 in doped semiconductors, the concept of a time-reversal
invariant spin Hall insulator3 was introduced. In the extreme
quantum limit, a quantum spin Hall (QSH) insulator state has
been proposed for various systems4–6. Recently, the QSH effect
has been theoretically proposed6 and experimentally observed7

in HgTe quantum wells. One central question, however, remains
unanswered—what is the direct experimental manifestation
of this topologically non-trivial state of matter? In the case
of the quantum Hall effect, it is the quantization of the
Hall conductance and the fractional charge of quasiparticles,
which are results of non-trivial topological structure. Here,
we predict that for the QSH state a magnetic domain wall
induces a localized state with half the charge of an electron.
We also show that a rotating magnetic field can induce a
quantized d.c. electric current, and vice versa. Both of these
physical phenomena are expected to be direct and experimentally
observable consequences of the non-trivial topology of the
QSH state.

The quantum spin Hall (QSH) insulators are time-reversal
invariant and have a bulk charge-excitation gap. However, this
system also possesses topologically protected gapless edge states
that lie inside the bulk insulating gap. The edge states of the
QSH insulator state differ from the quantum Hall effect and
have a distinct helical property: two states with opposite spin
polarization counterpropagate at a given edge4,8,9. The edge states
come in Kramers’s doublets, and time-reversal symmetry ensures
the crossing of their energy levels at special points in the Brillouin
zone. Because of this level crossing, the spectrum of a QSH
insulator cannot be adiabatically deformed into a topologically
trivial insulating state; therefore, in this precise sense, the QSH
insulators represent a topologically distinct new state of matter.

The idea of fractional charge induced at a domain wall
goes back to the Su–Schrieffer–Heeger model10. (Recently, this
model has been applied to describe the fractional charge carried
by ‘edge solitons’ or bulk quasiparticles of two-dimensional
quantum Hall systems11.) For spinless fermions, a mass domain
wall induces a localized state with one-half charge. However,
for a real material such as polyacetylene, two spin orientations
are present for each electron, and because of this doubling, a
domain wall in polyacetylene only carries integer charge; the
proposal of Su, Schrieffer and Heeger, and its counterpart in field
theory, the Jackiw–Rebbi model12, have never been experimentally
realized. Conventional one-dimensional electronic systems have
four basic degrees of freedom, right- and left-movers with each spin
orientation. However, a helical liquid at a given edge of the QSH
insulator has only two: a spin-up (or -down) right-mover and a

spin-down (or -up) left-mover. Therefore, the helical liquid has half
the degrees of freedom of a conventional one-dimensional system,
and thus avoids the doubling problem. Because of this fundamental
topological property of the helical liquid, a domain wall carries
charge e/2.We propose a Coulomb blockade experiment to observe
this fractional charge. As a temporal analogue of the fractional
charge effect, the pumping of a quantized charge current during
each periodic rotation of a magnetic field is also proposed. This
provides a direct realization of Thouless’s topological pumping13.

We can express the effective theory for the edge states of a non-
trivial QSH insulator as

H0 = vF

∫
dx(ψ†

R+
i∂xψR+ −ψ†

L−i∂xψL−) = vF

∫
dxΨ †iσ3∂xΨ ,

(1)

where ± indicate members of a Kramers’s doublet, L/R indicate
left- or right-movers, vF is the Fermi velocity andΨ = (ψR+,ψL−)T

(refs 8,9). These helical fermion states have only two degrees of
freedom; the spin polarization is correlated with the direction
of motion.

A mass term, being proportional to the Pauli matrices (σ1,2,3),
can only be introduced in the hamiltonian by coupling to a
T-breaking external field such as a magnetic field or aligned
magnetic impurities. To leading order in perturbation theory, a
magnetic field generates the mass terms

HM =

∫
dxΨ †

∑
a=1,2,3

ma(x, t)σaΨ =

∫
dxΨ †

∑
a,i

taiBi(x, t)σaΨ ,

where Bi is the three-dimensional magnetic field and the
model-dependent coefficient matrix tai is determined by the
coupling of the edge states to the magnetic field. According to
the work of Goldstone and Wilczek14, at zero temperature the
ground-state charge density and current in a background field
ma(x, t) is given by

jµ =
1

2π

1
√
mαmα

εµνεαβmα∂νmβ, α,β= 1,2,

where µ,ν= 0,1 correspond to the time and space components,
respectively, and εµν,εαβ are the two-index totally antisymmetric
tensors in their respective indices. Note that m3 does not enter
the long-wavelength charge-response equation. If we parameterize
m1 = m cos θ, m2 = m sin θ, then the response equation is
simplified to

ρ=
1

2π
∂xθ(x, t), j= −

1

2π
∂tθ(x, t).
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Figure 1 Illustrations of proposed phenomena. a, Schematic diagram of the
half-charge domain wall. The blue arrows show a magnetic domain wall
configuration and the purple line shows the mass kink. The red curve shows the
charge density distribution. b, Schematic diagram of the pumping induced by the
rotation of the magnetic field. The blue circle with arrow shows the magnetic field
rotation trajectory.

Such a response is ‘topological’ in the sense that the net charge
Q in a region [x1, x2] at time t depends only on the boundary
values of θ(x, t), that is, Q=[θ(x2, t)−θ(x1, t)]/2π. In particular,
a half-charge ±e/2 is carried by an antiphase domain wall of θ,
as shown in Fig. 1a (ref. 12). Similarly, the charge pumped by
a purely time-dependent θ(t) field in a time interval [t1, t2] is
1Qpump|

t2
t1

= [θ(t2) − θ(t1)]/2π. When θ is rotated from 0 to 2π
adiabatically, a quantized charge e is pumped through the one-
dimensional system, as shown in Fig. 1b.

From the linear relation ma = taiBi, the angle θ can
be determined for a given magnetic field Bi as θ(x, t) =

θ(B(x, t)) = Im log(t1 · B(x, t) + it2 · B(x, t)), in which t1(2) is
the three-dimensional vector with components t1(2)i, respectively.
As θ(B) = θ(−B) + π, the charge localized on an antiphase
magnetic domain wall of the magnetic field is always ±e/2. For the
pumping effect, the winding number of θ(t) is given by the winding
number of the B vector around the axis t1 × t2. The conditions for
these effects to be observed are kBT , h̄ω� Eg, where kBT is the
energy scale for temperature T , ω is the pumping frequency and
Eg =

√
(t1 ·B)2 + (t2 ·B)2 is the energy gap of the helical edge state

generated by the magnetic field.
The coefficients tai for HgTe/CdTe quantum wells can be

obtained numerically by solving the four-band effective model
given in ref. 6 with the addition of terms that result from bulk
inversion asymmetry (see the Methods section). For a quantum
well with thickness d = 70 Å and an edge along the y direction, we
obtain t1 = (−0.3,0,0)meVT−1 and t2 = (0,−0.3,−3.1)meVT−1

(ref. 15). (Here and below the z direction is the quantum well
growth direction.) Thus, the gap induced by an in-plane field
Bx = 1 T is Egx ' 0.3meV, whereas the perpendicular component
Bz = 1 T produces a much larger gap Egz ' 3.1meV. (Such a
large anisotropy between in-plane and perpendicular magnetic
fields agrees well with the experimental observations in ref. 7.)
Consequently, the charge fractionalization effect can be observed
at temperatures T � 35K on a domain wall with a perpendicular
magnetic field, whereas the adiabatic pumping effect can only be
observed at much lower temperatures T�3.5K because it depends
partially on the gap from in-plane fields.

Recently, a novel device has been developed to measure the
charge of a confined region: the single-electron transistor16–18

(SET). This device can sensitively measure charges comparable to
or even smaller than the electronic charge18,19 (see the Methods
section). The fractional charge created by a magnetic domain
wall on the QSH edge is confined in the region between the two
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Figure 2 Experimental geometry of the SET device and proposed signature of
static fractional charge. a, The SET device with parallel and antiparallel magnetic
domains. The blue and grey rectangles are the magnetic domains and voltage
probes, respectively. (In all of the diagrams, the magnetic domain on the bottom arm
is always pinned, which is designed to block the transport of that arm so that the
conductance of the SET device on the upper arm can be measured.) The
conductance peak shift is shown on the right. The inset shows a schematic diagram
of the bound-state wavefunction. b, Schematic diagram of the conductance peak
positions Gpeak being shifted by continuous rotation of the magnetic field. (Here and
in Fig. 3, the actual direction of the rotating magnetic field should be in the plane
perpendicular to the edge.)

magnetic domains separated by the wall. This confined charge
can be measured by designing a magnetic SET experiment. A
schematic diagram of such a device is shown in Fig. 2. Two
magnetic islands can trap the electrons between them, just like a
quantum wire trapped between two potential barriers17. In such a
device, the conductance oscillations can be observed as in typical
Coulomb-blockade measurements. The background charge in the
confined region consists of two parts: Qb = Qc + Qe, with Qe

being the contribution of the lowest sub-band electrons and Qc

being that of higher-energy bands and nuclei. When the field
direction in one of the magnetic domains is switched, Qc remains
invariant but Qe will change by e/2, which demonstrates the half-
charge associated to the antiphase domain wall. Consequently,
if we use a top gate on the confined region and measure the
conductance oscillations G(V ), there will be a half-period phase
shift between the oscillation pattern of parallel and antiparallel
magnetic domains, as shown in Fig. 2.

Experimentally, magnetic islands can be deposited on top of
semiconductor heterostructures creating a hybrid ferromagnet–
semiconductor device20,21. The magnetic islands can be polarized
by magnetic field and locally switched using a coercive field
and conventional magnetic-force microscopy techniques (see, for
example, ref. 22). The quantum well will be locally exposed to
the fringe fields of the ferromagnetic islands. To observe the
conductance oscillations, several conditions should be satisfied
by the magnetic field configuration which are outlined in the
Methods section.
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Figure 3 Experimental geometry for current generated from adiabatic pumping.
Schematic diagram of the device for measuring the quantized charge current. A and
B are source and drain without an applied voltage bias between them.

So far, our focus has been on a magnetic domain wall structure
that is externally imposed. However, it is also possible that
the system could spontaneously generate such magnetic domain
walls. In refs 8,9, it was shown that two-particle backscattering
interactions are allowed in the helical liquid. In the strong coupling
limit, such a process can lead to a spontaneous breaking of time-
reversal symmetry, and spontaneous generation of a magnetic
moment at the edge. This symmetry breaking is described by an
Ising-like Z2 order parameter, which at finite temperature in one
dimension leads to a finite density of magnetic domain walls. Our
work shows that such domain walls, which are the elementary
excitations of the system, will carry fractional charge ±e/2.

We remark that the phenomenon of fractional charge associated
with a magnetic domain wall is an example of ‘electromagnetic
duality’ in one dimension. Here, a domain wall is a point-like
object, and is dual to a point particle. In our particular case, a
magnetic domain wall induces an electric point charge (e/2π)1θ.
In three dimensions, a natural magnetic point singularity is a
magnetic monopole, and Witten showed23 that it can induce an
electric point charge (e/2π)θ, where θ is the vacuum angle of
quantum chromodynamics. The duality between a magnetic point
charge and an electric point charge in the helical liquid of the
QSH state has many other profound consequences which we shall
demonstrate in future publications.

If the magnetic moment of one domain in the proposed
SET device is rotated continuously by a full period while the
other one remains static, the conductance peak position will shift
relatively by a full period, as shown in Fig. 2b. Such a shift of the
conductance peaks shows the change of background charge by e
in the confined region, which is a consequence of the topological
pumping effect. Another device to measure the pumping current
directly is shown in Fig. 3. One strongly pinned and one easy-
plane magnetic island are deposited above one of each of the two
arms of the device, respectively. When applying a small rotating
external field with frequency ω, the magnetization of the easy-
plane island will be rotated while the pinned one remains static.
Consequently, a quantized charge current is pumped, given by the
formula I= eω/2π in the adiabatic approximation. To observe such
an effect, the magnetic field-induced gap must be much larger than
the temperature.

We have shown the feasibility of two striking topological effects
in the QSH state. Using a single-electron transistor-like sensor,
we proposed an experimental setting to create and observe the
fractionally charged domain wall. Such topological phenomena, if
observed, not only provide the first experimental realization of the

fractional charge in one-dimensional systems, but also introduce
a physical and operational definition of the two-dimensional
topological (QSH) insulator. An (infinitesimal) magnetic field
domain wall configuration can be used as a sensor to characterize
two-dimensional insulators. If such a detection device induces a
localized fractional charge response on the sample edge, then the
system is defined to be a topological insulator. Such a definition
is experimentally meaningful because it is based on the response
of the system to some physical external field, and is completely
analogous to the definition of the quantum Hall insulator as a
system that produces a quantized Hall response to an external
electric field.

METHODS

As shown in ref. 6, the low-energy physics of a HgTe/CdTe quantum well
is described by a 4× 4 effective model, which can be obtained from a
standard envelope function approach starting from the Kane model24. Once
the effective model H(k) is obtained, the edge states can be obtained by
diagonalizing the hamiltonian with a lattice regularization on a cylindrical
geometry. Denoting |k,±〉 as the two counterpropagating edge states
on the same physical boundary, the low-energy behaviour of these two
channels is described by the one-dimensional hamiltonian (1). To leading
order in magnetic field, the bulk effective hamiltonian can be expanded as
H(B) 'H0 +H1(B) ≡H0 +M̂ ·B+ Ĵ ·A, where the last two terms represent
the Zeeman coupling and orbital effect of the magnetic field, respectively. Only
the perpendicular magnetic field Bz contributes to A. The matrix element of H1

between the edge states |k = 0,±〉 is mαβ(B) = 〈k = 0,α|H1|k = 0,β〉, from
which the coefficients tai can be determined as tai = (1/2)tr[σa(∂m/∂Bi)B=0].

It should be noted that the perturbative calculation here is done for the
two-dimensional bulk effective hamiltonian, although the resulting edge theory
is still one-dimensional. Specifically, the two-dimensional bulk effects of the
magnetic field are included in the orbital term Ĵ ·A. In ref. 6, the effective
hamiltonian is block diagonal with the two counterpropagating edge states
in different blocks, so that the current operator Ĵ is also block diagonal and a
perpendicular magnetic field cannot open a gap between edge states. However,
the block-diagonal nature of the hamiltonian is not preserved when the bulk
inversion asymmetry of the zinc-blende lattice is taken into account. This leads
to terms HBIA = ∆(−|E1+〉〈H1 −|+|E1−〉〈H1 +|)+h.c. With such terms,
the edge state gap induced by perpendicular magnetic field is non-zero. Owing
to the non-trivial bulk topology, the orbital effect of a perpendicular magnetic
field is quite strong, which makes a perpendicular field much more efficient
than an in-plane field for opening the edge-state gap, even though the ∆ term
is small and usually subsidiary in other effects. More details concerning the
perturbation procedure and the inclusion of bulk inversion breaking terms will
be reserved for a future publication that deals with these specific issues.

The SET device uses the Coulomb blockade phenomenon to sensitively
measure charge in a local region. When applying a gate voltage V on top of
a confined region (for example, quantum dot or wire) with capacitance C,
the background charge induced by the gate screening is given by Qb = CV .
The Coulomb energy cost for an extra electron to enter the confined region
has a period-e dependence on the background charge Qb, and vanishes at
Qb = (n+1/2)e with n being an integer. Consequently, the I–V curve of
the confined region shows an oscillation with period e/C and reaches its
maximum at V = (n+1/2)e/C, where the average net charge of the confined
region is a half-odd integer multiplied by the electron charge. For more details,
see ref. 17.

For the fractional charge effect to be observed in the proposed SET device,
the following conditions should be satisfied by the magnetic configuration in
the hybrid semiconductor–ferromagnet device.

(1) The oscillation period 1V = e/C should be much smaller than the
bulk gap scale V = Eg/e so that several periods of oscillation can be observed
before the gate voltage is so high that the bulk states are activated. This leads to
the requirement C � e2/Eg.

(2) The ratio of the minimal conductance to the maximal conductance is
estimated by

Gmin/Gmax ' exp

[
−
e2/2C

kBT

]
,
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with e2/2C being the maximal charge activation gap. For the oscillations to be
observable, this ratio should be reasonably smaller than 1, which leads to the
condition e2/2C ≥ kBT or C ≤ e2/2kBT .

(3) The domain wall state trapped between the magnetic domains has an
exponential tail as shown in Fig. 2. To make the conductance measurement,
the size of the magnetic islands should be comparable to the exponential tail
length ξM ' h̄vF/Eg, with Eg being the magnetic-field-induced gap, so that the
localized state is well confined, but tunnelling through the barrier is still strong
enough to support observable transport.

The edge state trapped between magnetic domains has the linear size
ξ× d× L, where ξ' h̄vF/M is the penetration depth of the edge state, d
is the thickness of the quantum well and L is the distance between the two
magnetic regions. In the one-dimensional approximation L� d,ξ, we obtain
the approximate form of the capacitance C ' 4πε0L/[log(L2/dξ)−2]. For
d = 70 Å, we find the condition 1 µm� L � 100 µm. For a magnetic field
Bz = 1 T, the size of each magnetic island is r ∼ 120 nm.
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