Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum magnetism and criticality

Abstract

Magnetic insulators have proved to be fertile ground for studying new types of quantum many-body state, and I survey recent experimental and theoretical examples. The insights and methods also transfer to novel superconducting and metallic states. Of particular interest are critical quantum states, sometimes found at quantum phase transitions, which have gapless excitations with no particle- or wave-like interpretation, and control a significant portion of the finite-temperature phase diagram. Remarkably, their theory is connected to holographic descriptions of Hawking radiation from black holes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Néel states.
Figure 2: The coupled-dimer antiferromagnet.
Figure 3: Valence-bond solid states.
Figure 4: Caricature of a spin-liquid state.
Figure 5: Histogram of the VBS order parameter.

© 2007 APS

Figure 6: Bosons with repulsive interactions on a square lattice at filling f=1.
Figure 7: Bosons with repulsive interactions on a square lattice at filling f=1/2.
Figure 8: Structures of possible insulating states on the square lattice for paired electrons at a hole density of x=1/8 (f=1/16).

© 2005 APS

Figure 9: Phase diagram of the superfluid–insulator transition in two dimensions.
Figure 10: Superfluid–insulator transition applied to the cuprate superconductors.

© 2007 AAAS

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  Google Scholar 

  2. Matsumoto, M., Yasuda, C., Todo, S. & Takayama, H. Ground-state phase diagram of quantum Heisenberg antiferromagnets on the anisotropic dimerized square lattice. Phys. Rev. B 65, 014407 (2002).

    Article  ADS  Google Scholar 

  3. Chakravarty, A., Halperin, B. I. & Nelson, D. R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344–2371 (1989).

    Article  ADS  Google Scholar 

  4. Chubukov, A. V., Sachdev, S. & Ye, J. Theory of two-dimensional quantum antiferromagnets with a nearly-critical ground state. Phys. Rev. B 49, 11919–11961 (1994).

    Article  ADS  Google Scholar 

  5. Coldea, R., Tennant, D. A. & Tylczynski, Z. Extended scattering continua characteristic of spin fractionalization in the two-dimensional frustrated quantum magnet Cs2CuCl4 observed by neutron scattering. Phys. Rev. B 68, 134424 (2003).

    Article  ADS  Google Scholar 

  6. Bernu, B., Lecheminant, P., Lhuillier, C. & Pierre, L. Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice. Phys. Rev. B 50, 10048–10062 (1994).

    Article  ADS  Google Scholar 

  7. Chubukov, A. V., Senthil, T. & Sachdev, S. Universal magnetic properties of frustrated quantum antiferromagnets in two dimensions. Phys. Rev. Lett. 72, 2089–2092 (1994).

    Article  ADS  Google Scholar 

  8. Oosawa, A., Fujisawa, M., Osakabe, T., Kakurai, K. & Tanaka, H. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl3 . J. Phys. Soc. Japan 72, 1026–1029 (2003).

    Article  ADS  Google Scholar 

  9. Rüegg, Ch. et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 . Nature 423, 62–65 (2003).

    Article  ADS  Google Scholar 

  10. Jaime, M. et al. Magnetic-field-induced condensation of triplons in Han purple pigment BaCuSi2O6 . Phys. Rev. Lett. 93, 087203 (2004).

    Article  ADS  Google Scholar 

  11. Cavadini, N. et al. Magnetic excitations in the quantum spin system TlCuCl3 . Phys. Rev. B 63, 172414 (2001).

    Article  ADS  Google Scholar 

  12. Xu, G. et al. Mesoscopic phase coherence in a quantum spin fluid. Science 317, 1049–1052 (2007).

    Article  ADS  Google Scholar 

  13. Tamura, M., Nakao, A. & Kato, R. Frustration-induced valence-bond ordering in a new quantum triangular antiferromagnet based on [Pd(dmit)2]. J. Phys. Soc. Japan 75, 093701 (2006).

    Article  ADS  Google Scholar 

  14. Lee, S.-H. et al. Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4−x(OD)6Cl2 . Nature Mater. 6, 853–857 (2007).

    Article  ADS  Google Scholar 

  15. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  16. Raczkowski, M., Capello, M., Poilblanc, D., Frésard, R. & Olés, A. M. Unidirectional d-wave superconducting domains in the two-dimensional t-J model. Phys. Rev. B 76, 140505(R) (2007).

    Article  ADS  Google Scholar 

  17. Vojta, M. & Rösch, O. Superconducting d-wave stripes in cuprates: Valence bond order coexisting with nodal quasiparticles. Preprint at <http://arxiv.org/abs/cond-mat/0709.4244> (2007).

  18. Sachdev, S. & Read, N. Large N expansion for frustrated and doped quantum antiferromagnets. Int. J. Mod. Phys. B 5, 219–249 (1991).

    Article  ADS  Google Scholar 

  19. Sandvik, A. W. Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. Phys. Rev. Lett. 98, 227202 (2007).

    Article  ADS  Google Scholar 

  20. Melko, R. G. & Kaul, R. K. Universal scaling in the fan of an unconventional quantum critical point. Phys. Rev. Lett. 100, 017203 (2008).

    Article  ADS  Google Scholar 

  21. Jiang, F.-J., Nyfeler, M., Chandrasekharan, S. & Wiese, U.-J. From an antiferromagnet to a valence bond solid: Evidence for a first order phase transition. Preprint at <http://arxiv.org/abs/cond-mat/0710.3926> (2007).

  22. Melko, R. G., Sandvik, A. W. & Scalapino, D. J. Two-dimensional quantum XY model with ring exchange and external field. Phys. Rev. B 69, 100408(R) (2004).

    Article  ADS  Google Scholar 

  23. Read, N. & Sachdev, S. Valence bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694–1697 (1989) ibid Spin-Peierls, valence-bond solid, and Néel ground-states of low-dimensional quantum antiferromagnets. Phys. Rev. B 42, 4568–4569 (1990).

    Article  ADS  Google Scholar 

  24. Motrunich, O. I. & Vishwanath, A. Emergent photons and transitions in the O(3) sigma model with hedgehog suppression. Phys. Rev. B 70, 075104 (2004).

    Article  ADS  Google Scholar 

  25. Fradkin, E. & Kivelson, S. Short range resonating valence bond theories and superconductivity. Mod. Phys. Lett. B 4, 225–232 (1990).

    Article  ADS  Google Scholar 

  26. Polyakov, A. M. Gauge Fields and Strings (Harwood Academic, New York, 1987).

    Google Scholar 

  27. Haldane, F. D. M. O(3) Nonlinear σ model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett. 61, 1029–1032 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  28. Senthil, T., Balents, L., Sachdev, S, Vishwanath, A. & Fisher, M. P. A. Quantum criticality beyond the Landau–Ginzburg–Wilson paradigm. Phys. Rev. B 70, 144407 (2004).

    Article  ADS  Google Scholar 

  29. Read, N. & Sachdev, S. Large N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773–1776 (1991).

    Article  ADS  Google Scholar 

  30. Sachdev, S. Kagome and triangular lattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantum-disordered ground states with deconfined bosonic spinons. Phys. Rev. B 45, 12377–12396 (1992).

    Article  ADS  Google Scholar 

  31. Wen, X.-G. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B 44, 2664–2672 (1991).

    Article  ADS  Google Scholar 

  32. Jalabert, R. & Sachdev, S. Spontaneous alignment of frustrated bonds in an anisotropic, three dimensional Ising model. Phys. Rev. B 44, 686–690 (1991).

    Article  ADS  Google Scholar 

  33. Sachdev, S. & Vojta, M. Translational symmetry breaking in two-dimensional antiferromagnets and superconductors. J. Phys. Soc. Japan 69 (Suppl. B), 1–9 (2000).

    Google Scholar 

  34. Bais, F. A. Flux metamorphosis. Nucl. Phys. B 170, 32–43 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  35. Bais, F. A., van Driel, P. & de Wild Propitius, M. Quantum symmetries in discrete gauge theories. Phys. Lett. B 280, 63–70 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  36. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  37. Wang, C., Harrington, J. & Preskill, J. Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Ann. Phys. 303, 31–58 (2003).

    Article  ADS  Google Scholar 

  38. Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 (2003).

    Article  ADS  Google Scholar 

  39. Senthil, T. & Fisher, M. P. A. Z2 gauge theory of electron fractionalization in strongly correlated systems. Phys. Rev. B 62, 7850–7881 (2000).

    Article  ADS  Google Scholar 

  40. Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).

    Article  ADS  Google Scholar 

  41. Freedman, M., Nayak, C., Shtengel, K., Walker, K. & Wang, Z. A class of P,T-invariant topological phases of interacting electrons. Ann. Phys. 310, 428–492 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  42. Rüegg, Ch. et al. Pressure-controlled quantum fluctuations and elementary excitations in quantum magnets (preprint).

  43. Liu, K.-S. & Fisher, M. E. Quantum lattice gas and the existence of a supersolid. J. Low. Temp. Phys. 10, 655–683 (1973).

    Article  ADS  Google Scholar 

  44. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    Article  ADS  Google Scholar 

  45. Kuklov, A. B., Prokofev, N. V., Svistunov, B. V. & Troyer, M. Deconfined criticality, runaway flow in the two-component scalar electrodynamics and weak first-order superfluid-solid transitions. Ann. Phys. 321, 1602–1621 (2006).

    Article  ADS  Google Scholar 

  46. Nogueira, F. S., Kragset, S. & Sudbo, A. Quantum critical scaling behaviour of deconfined spinons. Phys. Rev. B 76, 220403(R) (2007).

    Article  ADS  Google Scholar 

  47. Rantner, W. & Wen, X.-G. Electron spectral function and algebraic spin liquid for the normal state of underdoped high T c superconductors. Phys. Rev. Lett. 86, 3871–3874 (2001).

    Article  ADS  Google Scholar 

  48. Affleck, I. & Marston, J. B. Large-n limit of the Heisenberg-Hubbard model: Implications for high-T c superconductors. Phys. Rev. B 37, 3774–3777 (1988).

    Article  ADS  Google Scholar 

  49. Hermele, M. et al. Stability of U(1) spin liquids in two dimensions. Phys. Rev. B 70, 214437 (2004).

    Article  ADS  Google Scholar 

  50. Hermele, M., Senthil, T. & Fisher, M. P. A. Algebraic spin liquid as the mother of many competing orders. Phys. Rev. B 72, 104404 (2005).

    Article  ADS  Google Scholar 

  51. Ran, Y., Hermele, M., Lee, P. A. & Wen, X.-G. Projected wavefunction study of spin-1/2 Heisenberg model on the Kagome lattice. Phys. Rev. Lett. 98, 117205 (2007).

    Article  ADS  Google Scholar 

  52. Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005).

    Article  ADS  Google Scholar 

  53. Fisher, M. P. A., Weichmann, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  54. Balents, L., Bartosch, L., Burkov, A., Sachdev, S. & Sengupta, K. Putting competing orders in their place near the Mott transition. Phys. Rev. B 71, 144508 (2005).

    Article  ADS  Google Scholar 

  55. Lannert, L., Fisher, M. P. A. & Senthil, T. Quantum confinement transition in a d-wave superconductor. Phys. Rev. B 63, 134510 (2001).

    Article  ADS  Google Scholar 

  56. Balents, L. & Sachdev, S. Dual vortex theory of doped antiferromagnets. Ann. Phys. 322, 2635–2664 (2007).

    Article  ADS  Google Scholar 

  57. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

    Article  ADS  Google Scholar 

  58. Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003).

    Article  ADS  Google Scholar 

  59. Senthil, T., Sachdev, S. & Vojta, M. Quantum phase transitions out of the heavy Fermi liquid. Physica B 359–361, 9–16 (2005).

    Article  ADS  Google Scholar 

  60. Kaul, R. K., Kim, Y. B., Sachdev, S. & Senthil, T. Algebraic charge liquids. Nature Phys. 4, 28–31 (2008).

    Article  ADS  Google Scholar 

  61. Damle, K. & Sachdev, S. Non-zero temperature transport near quantum critical points. Phys. Rev. B 56, 8714–8733 (1997).

    Article  ADS  Google Scholar 

  62. Giamarchi, T. Umklapp process and resistivity in one-dimensional fermion systems. Phys. Rev. B 44, 2905–2913 (1991).

    Article  ADS  Google Scholar 

  63. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  64. Zaanen, J. A black hole full of answers. Nature 448, 1000–1001 (2007).

    Article  ADS  Google Scholar 

  65. Strominger, A. & Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99–104 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  66. Maldacena, J. M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  67. Gubser, S. S., Klebanov, I. R. & Polyakov, A. M. Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  68. Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–290 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  69. Policastro, G., Son, D. T. & Starinets, A. O. From AdS/CFT correspondence to hydrodynamics. JHEP 0209, 043 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  70. Herzog, C. P., Kovtun, P. K., Sachdev, S. & Son, D. T. Quantum critical transport, duality, and M-theory. Phys. Rev. D 75, 085020 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  71. Herzog, C. P. The hydrodynamics of M-theory. JHEP 0212, 026 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  72. Damle, K. & Sachdev, S. Spin dynamics and transport in gapped one-dimensional Heisenberg antiferromagnets at nonzero temperatures. Phys. Rev. B 57, 8307–8339 (1998).

    Article  ADS  Google Scholar 

  73. Wang, Y. & Li, L. Ong, N. P. Nernst effect in high-T c superconductors. Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  74. Müller, M. & Sachdev, S. Collective cyclotron motion of the relativistic plasma in graphene. Preprint at <http://arxiv.org/abs/cond-mat/0801.2970> (2008).

  75. Son, D. T. Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction. Phys. Rev. B 75, 235423 (2007).

    Article  ADS  Google Scholar 

  76. Hartnoll, S. A., Kovtun, P. K., Müller, M. & Sachdev, S. Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007).

    Article  ADS  Google Scholar 

  77. Kadanoff, L. P. & Martin, P. C. Hydrodynamic equations and correlation functions. Ann. Phys. 24, 419–469 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  78. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics, Section 127 (Butterworth-Heinemann, Oxford, 1987).

    Google Scholar 

  79. Hartnoll, S. A. & Herzog, C. P. Impure AdS/CFT. Preprint at <http://arxiv.org/abs/cond-mat/0801.1693> (2008).

  80. Hartnoll, S. A. & Kovtun, P. K. Hall conductivity from dyonic black holes. Phys. Rev. D 76, 066001 (2007).

    Article  ADS  Google Scholar 

  81. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank S. Bais, S. Hartnoll, R. Kaul, R. Melko, M. Metlitski, M. Müller and A. Sandvik for valuable comments. This work was supported by NSF Grant No. DMR-0537077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Sachdev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachdev, S. Quantum magnetism and criticality. Nature Phys 4, 173–185 (2008). https://doi.org/10.1038/nphys894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing