Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bose–Einstein condensation in magnetic insulators

Abstract

The Bose–Einstein condensate (BEC) is a fascinating state of matter predicted to occur for particles obeying Bose statistics. Although the BEC has been observed with bosonic atoms in liquid helium and cold gases, the concept is much more general. We here review analogous states, where excitations in magnetic insulators form the BEC. In antiferromagnets, elementary excitations are magnons, quasiparticles with integer spin and Bose statistics. In certain experiments their density can be controlled by an applied magnetic field leading to the formation of a BEC. Furthermore, interactions between the excitations and the interplay with the crystalline lattice produce very rich physics compared with the canonical BEC. Studies of magnon condensation in a growing number of magnetic materials thus provide a unique window into an exciting world of quantum phase transitions and exotic quantum states, with striking parallels to phenomena studied in ultracold atomic gases in optical lattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BEC of magnons in dimerized quantum antiferromagnets.
Figure 2: Experimental results on the magnon BEC.
Figure 3: Lattice boson phases.

Similar content being viewed by others

References

  1. Bose, S. N. Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924).

    Article  ADS  MATH  Google Scholar 

  2. Einstein, A. Quantentheorie des einatomigen idealen Gases. Sitz. Ber. Kgl. Preuss. Akad. Wiss. 261–267 (1924).

  3. Bloch, F. Zur Theorie des Ferromagnetismus. Z. Physik 61, 206–219 (1930).

    Article  ADS  MATH  Google Scholar 

  4. Matsubara, T. & Matsuda, H. A lattice model of liquid helium. Prog. Theor. Phys. 16, 569–582 (1956).

    Article  ADS  MATH  Google Scholar 

  5. Batyev, E. G. & Braginskii, L. S. Antiferromagnet in a strong magnetic field: Analogy with Bose gas. Sov. Phys. JETP 60, 781–786 (1984).

    Google Scholar 

  6. Affleck, I. Theory of Haldane-gap antiferromagnets in applied fields. Phys. Rev. B 41, 6697–6702 (1990).

    Article  ADS  Google Scholar 

  7. Giamarchi, T. & Tsvelik, A. M. Coupled ladders in a magnetic field. Phys. Rev. B 59, 11398–11407 (1999).

    Article  ADS  Google Scholar 

  8. Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of diluted magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000).

    Article  ADS  Google Scholar 

  9. Wessel, S., Olshanii, M. & Haas, S. Field-induced magnetic order in quantum spin liquids. Phys. Rev. Lett. 87, 206407 (2001).

    Article  ADS  Google Scholar 

  10. Rice, T. M. To condense or not to condense. Science 298, 760–761 (2002).

    Article  Google Scholar 

  11. Matsumoto, M., Normand, B., Rice, T. M. & Sigrist, M. Magnon dispersion in the field-induced magnetically ordered phase of TlCuCl3 . Phys. Rev. Lett. 89, 077203 (2002).

    Article  ADS  Google Scholar 

  12. Matsumoto, M., Normand, B., Rice, T. M. & Sigrist, M. Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3 . Phys. Rev. B 69, 054423 (2004).

    Article  ADS  Google Scholar 

  13. Nohadani, O., Wessel, S., Normand, B. & Haas, S. Universal scaling at field-induced magnetic phase transitions. Phys. Rev. B 69, 220402 (2004).

    Article  ADS  Google Scholar 

  14. Rüegg, C. et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 . Nature 423, 62–65 (2003).

    Article  ADS  Google Scholar 

  15. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  ADS  Google Scholar 

  16. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  17. Volovik, G. E. Twenty years of magnon Bose condensation and spin current superfluidity in 3He-B. Preprint at <http://arxiv.org/abs/cond-mat/0701180> (2007).

  18. Bunkov, Y. M. & Volovik, G. E. Magnon condensation into a Q ball in 3He-B. Phys. Rev. Lett. 98, 265302 (2007).

    Article  ADS  Google Scholar 

  19. Nogueira, F. S. & Bennemann, K.-H. Spin Josephson effect in ferromagnet/ferromagnet tunnel junctions. Europhys. Lett. 67, 620–626 (2004).

    Article  ADS  Google Scholar 

  20. Syromyatnikov, A. V. Bose–Einstein condensation of magnons in magnets with predominant ferromagnetic interactions. Phys. Rev. B 75, 134421 (2007).

    Article  ADS  Google Scholar 

  21. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  22. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  23. Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005).

    Article  ADS  Google Scholar 

  24. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. (in the press); preprint at <http://arxiv.org/abs/cond-mat/0704.3011> (2007).

  25. Cavadini, N. et al. Magnetic excitations in the quantum spin system TlCuCl3 . Phys. Rev. B 63, 172414 (2001).

    Article  ADS  Google Scholar 

  26. Cavadini, N. et al. Triplet excitations in low-H c spin gap systems KCuCl3 and TlCuCl3: An inelastic neutron scattering study. Phys. Rev. B 65, 132415 (2002).

    Article  ADS  Google Scholar 

  27. Johannsen, N., Vasiliev, A., Oosawa, A., Tanaka, H. & Lorenz, T. Magnetoelastic coupling in the spin-dimer system TlCuCl3 . Phys. Rev. Lett. 95, 017205 (2005).

    Article  ADS  Google Scholar 

  28. Vyaselev, O., Takigawa, M., Vasiliev, A., Oosawa, A. & Tanaka, H. Field-induced magnetic order and simultaneous lattice deformation in TlCuCl3 . Phys. Rev. Lett. 92, 207202 (2004).

    Article  ADS  Google Scholar 

  29. Sherman, E. Y., Lemmens, P., Busse, B., Oosawa, A. & Tanaka, H. Sound attenuation study on the Bose–Einstein condensation of magnons in TlCuCl3 . Phys. Rev. Lett. 91, 057201 (2003).

    Article  ADS  Google Scholar 

  30. Misguich, G. & Oshikawa, M. Bose–Einstein condensation of magnons in TlCuCl3: Phase diagram and specific heat from a self-consistent Hartree–Fock calculation with a realistic dispersion relation. J. Phys. Soc. Japan 73, 3429–3434 (2004).

    Article  ADS  MATH  Google Scholar 

  31. Glazkov, V. N., Smirnov, A. I., Tanaka, H. & Oosawa, A. Spin-resonance modes of the spin-gap magnet TlCuCl3 . Phys. Rev. B 69, 184410 (2004).

    Article  ADS  Google Scholar 

  32. Kolezhuk, A. K., Glazkov, V. N., Tanaka, H. & Oosawa, A. Dynamics of an anisotropic spin dimer system in a strong magnetic field. Phys. Rev. B 70, 020403 (2004).

    Article  ADS  Google Scholar 

  33. Sirker, J., Weisse, A. & Sushkov, O. P. Consequences of spin–orbit coupling for the Bose–Einstein condensation of magnons. Europhys. Lett. 68, 275–281 (2004).

    Article  ADS  Google Scholar 

  34. Sasago, Y., Uchinokura, K., Zheludev, A. & Shirane, G. Temperature-dependent spin gap and singlet ground state in BaCuSi2O6 . Phys. Rev. B 55, 8357–8360 (1997).

    Article  ADS  Google Scholar 

  35. Rüegg, C. et al. Multiple magnon modes and consequences for the Bose–Einstein condensed phase in BaCuSi2O6 . Phys. Rev. Lett. 98, 017202 (2007).

    Article  ADS  Google Scholar 

  36. Jaime, M. et al. Magnetic-field-induced condensation of triplons in Han Purple pigment BaCuSi2O6 . Phys. Rev. Lett. 93, 087203 (2004).

    Article  ADS  Google Scholar 

  37. Sebastian, S. E. et al. Dimensional reduction at a quantum critical point. Nature 441, 617–620 (2006).

    Article  ADS  Google Scholar 

  38. Batista, C. D. et al. Geometric frustration and dimensional reduction at a quantum critical point. Phys. Rev. Lett. 98, 257201 (2007).

    Article  ADS  Google Scholar 

  39. Rösch, O. & Vojta, M. Reduced dimensionality in layered quantum dimer magnets: Frustration vs. inhomogeneous condensates. Phys. Rev. B 76, 224408 (2007).

    Article  ADS  Google Scholar 

  40. Krämer, S. et al. Nuclear magnetic resonance evidence for a strong modulation of the Bose–Einstein condensate in BaCuSi2O6 . Phys. Rev. B 76, 100406 (2007).

    Article  ADS  Google Scholar 

  41. Xu, G. Y., Broholm, C., Reich, D. H. & Adams, M. A. Triplet waves in a quantum spin liquid. Phys. Rev. Lett. 84, 4465–4468 (2000).

    Article  ADS  Google Scholar 

  42. Shiramura, W. et al. Magnetisation plateaus in NH4CuCl3 . J. Phys. Soc. Japan 67, 1548–1551 (1998).

    Article  ADS  Google Scholar 

  43. Rüegg, C. et al. Neutron scattering study of the field-dependent ground state and the spin dynamics in spin-one-half NH4CuCl3 . Phys. Rev. Lett. 93, 037207 (2004).

    Article  ADS  Google Scholar 

  44. Matsumoto, M. Microscopic model for the magnetisation plateaus in NH4CuCl3 . Phys. Rev. B 68, 180403 (2003).

    Article  ADS  Google Scholar 

  45. Grenier, B. et al. Spin excitations throughout the field-induced magnetic phase of the spin 1/2 alternating chain compound Cu(NO3)2·2.5D2O. J. Magn. Magn. Matter 310, 1269–1271 (2007).

    Article  ADS  Google Scholar 

  46. Grenier, B. et al. Ordering and excitations in the field-induced magnetic phase of Cs3Cr2Br9 . Phys. Rev. Lett. 92, 177202 (2004).

    Article  ADS  Google Scholar 

  47. Garlea, V. O. et al. Excitations from a Bose–Einstein condensate of magnons in coupled spin ladders. Phys. Rev. Lett. 98, 167202 (2007).

    Article  ADS  Google Scholar 

  48. Masuda, T. et al. Dynamics of composite Haldane spin chains in IPA-CuCl3 . Phys. Rev. Lett. 96, 047210 (2006).

    Article  ADS  Google Scholar 

  49. Stone, M. B. et al. Field-driven phase transitions in a quasi-two-dimensional quantum antiferromagnet. New J. Phys. 9, 31 (2007).

    Article  ADS  Google Scholar 

  50. Zheludev, A. et al. Quasielastic neutron scattering in the high-field phase of a Haldane antiferromagnet. Phys. Rev. Lett. 88, 077206 (2002).

    Article  ADS  Google Scholar 

  51. Zapf, V. S. et al. Bose–Einstein condensation of S=1 nickel spin degrees of freedom in NiCl2-4SC (NH2)2 . Phys. Rev. Lett. 96, 077204 (2006).

    Article  ADS  Google Scholar 

  52. Zvyagin, S. A. et al. Magnetic excitations in the spin-1 anisotropic Heisenberg antiferromagnetic chain system NiCl2-4SC (NH2)2 . Phys. Rev. Lett. 98, 047205 (2007).

    Article  ADS  Google Scholar 

  53. Coldea, R. et al. Direct measurement of the spin hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4 . Phys. Rev. Lett. 88, 137203 (2002).

    Article  ADS  Google Scholar 

  54. Radu, T. et al. Bose–Einstein condensation of magnons in Cs2CuCl4 . Phys. Rev. Lett. 95, 127202 (2005).

    Article  ADS  Google Scholar 

  55. Tachiki, M. & Yamada, T. Spin ordering in a spin-pair system. J. Phys. Soc. Japan 28, 1413–1425 (1970).

    Article  ADS  Google Scholar 

  56. Maeda, Y., Hotta, C. & Oshikawa, M. Universal temperature dependence of the magnetisation of gapped spin chains. Phys. Rev. Lett. 99, 057205 (2007).

    Article  ADS  Google Scholar 

  57. Sebastian, S. E. et al. Role of anisotropy in the spin-dimer compound BaCuSi2O6 . Phys. Rev. B 74, 180401 (2006).

    Article  ADS  Google Scholar 

  58. Clémancey, M. et al. Field-induced staggered magnetization and magnetic ordering in Cu2(C5H12N2)2Cl4 . Phys. Rev. Lett. 97, 167204 (2006).

    Article  ADS  Google Scholar 

  59. Oshikawa, M. & Affleck, I. Field-induced gap in S=1/2 antiferromagnetic chains. Phys. Rev. Lett. 79, 2883–2886 (1997).

    Article  ADS  Google Scholar 

  60. Miyahara, S. et al. Uniform and staggered magnetizations induced by Dzyaloshinskii–Moriya interactions in isolated and coupled spin-1/2 dimers in a magnetic field. Phys. Rev. B 75, 184402 (2007).

    Article  ADS  Google Scholar 

  61. Matsumoto, M. & Sigrist, M. Ehrenfest relations and magnetoelastic effects in field-induced ordered phases. J. Phys. Soc. Japan 74, 2310–2316 (2005).

    Article  ADS  MATH  Google Scholar 

  62. Orignac, E. & Citro, R. Magnetostriction in an array of spin chains under a magnetic field. Phys. Rev. B 71, 214419 (2005).

    Article  ADS  Google Scholar 

  63. Oshikawa, M., Yamanaka, M. & Affleck, I. Magnetisation plateaus in spin chains: ‘Haldane gap’ for half-integer spins. Phys. Rev. Lett. 78, 1984–1987 (1997).

    Article  ADS  Google Scholar 

  64. Cabra, D. C., Honecker, A. & Pujol, P. Magnetisation plateaux in N-leg spin ladders. Phys. Rev. B 58, 6241–6257 (1998).

    Article  ADS  Google Scholar 

  65. Haldane, F. D. M. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981).

    Article  ADS  Google Scholar 

  66. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  Google Scholar 

  67. Kageyama, H. et al. Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2 . Phys. Rev. Lett. 82, 3168–3171 (1999).

    Article  ADS  Google Scholar 

  68. Kodama, K. et al. Magnetic superstructure in the two-dimensional quantum antiferromagnet SrCu2(BO3)2 . Science 298, 395–399 (2002).

    Article  ADS  Google Scholar 

  69. Sebastian, S. E. et al. Fractalization drives crystalline states in a frustrated spin system. Preprint at <http://arxiv.org/abs/cond-mat/0707.2075> (2007).

  70. Miyahara, S. & Ueda, K. Theory of the orthogonal dimer Heisenberg spin model for SrCu2(BO3)2 . J. Phys. Condens. Matter 15, R327–R366 (2003).

    Article  ADS  Google Scholar 

  71. Watson, B. C. et al. Magnetic spin ladder (C5H12N)2CuBr4: High-field magnetisation and scaling near quantum criticality. Phys. Rev. Lett. 86, 5168–5171 (2001).

    Article  ADS  Google Scholar 

  72. Lorenz, T. et al. Diverging thermal expansion of the spin-ladder system (C5H12N)2CuBr4 . Phys. Rev. Lett. (in the press); preprint at <http://arxiv.org/abs/cond-mat/0711.1510> (2007).

  73. Chitra, R. & Giamarchi, T. Critical properties of gapped spin-1/2 chains and ladders in a magnetic field. Phys. Rev. B 55, 5816–5826 (1997).

    Article  ADS  Google Scholar 

  74. Mila, F. Ladders in a magnetic field: A strong coupling approach. Eur. Phys. J. B 6, 201–205 (1998).

    Article  ADS  Google Scholar 

  75. Furusaki, A. & Zhang, S.-C. Dynamical spin correlations in the Heisenberg ladder under a magnetic field and correlation functions in the SO(5) ladder. Phys. Rev. B 60, 1175–1187 (1999).

    Article  ADS  Google Scholar 

  76. Usami, M. & Suga, S. Critical properties of S=1/2 Heisenberg ladders in magnetic fields. Phys. Rev. B 58, 14401–14406 (1998).

    Article  ADS  Google Scholar 

  77. Hikihara, T. & Furusaki, A. Spin correlations in the two-leg antiferromagnetic ladder in a magnetic field. Phys. Rev. B 63, 134438 (2001).

    Article  ADS  Google Scholar 

  78. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, Oxford, 2004).

    MATH  Google Scholar 

  79. Orignac, E., Citro, R. & Giamarchi, T. Critical properties and Bose–Einstein condensation in dimer spin systems. Phys. Rev. B 75, 140403 (2007).

    Article  ADS  Google Scholar 

  80. Prokof’ev, N. & Svistunov, B. Supersolid state of matter. Phys. Rev. Lett. 94, 155302 (2005).

    Article  ADS  Google Scholar 

  81. Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1113 (1969).

    ADS  Google Scholar 

  82. Chester, G. V. Speculations on Bose–Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article  ADS  Google Scholar 

  83. Leggett, A. J. Can a solid be superfluid?. Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  ADS  Google Scholar 

  84. Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

    Article  ADS  Google Scholar 

  85. Sasaki, S., Ishiguro, R., Caupin, F., Maris, H. J. & Balibar, S. Superfluidity of grain boundaries and supersolid behaviour. Science 313, 1098–1100 (2006).

    Article  ADS  Google Scholar 

  86. Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005).

    Article  ADS  Google Scholar 

  87. Heidarian, D. & Damle, K. Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005).

    Article  ADS  Google Scholar 

  88. Melko, R. G. et al. Supersolid order from disorder: Hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005).

    Article  ADS  Google Scholar 

  89. Ng, K. K. & Lee, T. K. Supersolid phase in spin dimer XXZ systems under a magnetic field. Phys. Rev. Lett. 97, 127204 (2006).

    Article  ADS  Google Scholar 

  90. Sengupta, P. & Batista, C. D. Field-induced supersolid phase in spin-one Heisenberg models. Phys. Rev. Lett. 98, 227201 (2007).

    Article  ADS  Google Scholar 

  91. Laflorencie, N. & Mila, F. Quantum and thermal transitions out of the supersolid phase of a 2D quantum antiferromagnet. Phys. Rev. Lett. 99, 027202 (2007).

    Article  ADS  Google Scholar 

  92. Giamarchi, T. & Schulz, H. J. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 37, 325–340 (1988).

    Article  ADS  Google Scholar 

  93. Nohadani, O., Wessel, S. & Haas, S. Bose-glass phases in disordered quantum magnets. Phys. Rev. Lett. 95, 227201 (2005).

    Article  ADS  Google Scholar 

  94. Roscilde, T. & Haas, S. Quantum localization in bilayer Heisenberg antiferromagnets with site dilution. Phys. Rev. Lett. 95, 207206 (2005).

    Article  ADS  Google Scholar 

  95. Yu, R., Roscilde, T. & Haas, S. Quantum disorder and Griffiths singularities in bond-diluted two-dimensional Heisenberg antiferromagnets. Phys. Rev. B 73, 064406 (2006).

    Article  ADS  Google Scholar 

  96. Roscilde, T. Field-induced quantum-disordered phases in S=1/2 weakly coupled dimer systems with site dilution. Phys. Rev. B 74, 144418 (2006).

    Article  ADS  Google Scholar 

  97. Xu, G. et al. Holes in a quantum spin liquid. Science 289, 419–422 (2000).

    Article  ADS  Google Scholar 

  98. Roscilde, T. & Haas, S. Mott glass in site-diluted S=1 antiferromagnets with single-ion anisotropy. Phys. Rev. Lett. 99, 047205 (2007).

    Article  ADS  Google Scholar 

  99. Rüegg, C. et al. Quantum statistics of interacting dimer spin systems. Phys. Rev. Lett. 95, 267201 (2005).

    Article  ADS  Google Scholar 

  100. Xu, G. et al. Mesoscopic phase coherence in a quantum spin fluid. Science 317, 1049–1052 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Swiss NSF under NCCR MaNEP, a Wolfson Royal Society Research Merit Award and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Giamarchi, Christian Rüegg or Oleg Tchernyshyov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giamarchi, T., Rüegg, C. & Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nature Phys 4, 198–204 (2008). https://doi.org/10.1038/nphys893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing