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The English physician and scientist 
William Gilbert first proposed in 1600 that 
the needle of a compass points northwards 
because of forces issuing from the Earth. 
Our planet, Gilbert presciently suggested 
in his masterwork, De Magnete, is itself an 
enormous magnet, and he supported his 
argument with experiments using an Earth-
like sphere of lodestone called a ‘terrella’. 
As he demonstrated, a compass held on the 
magnetized sphere’s surface acted much as 
one on the Earth.

In De Magnete, Gilbert also presented 
other bold hypotheses, asserting, for example, 
that quartz and other hard crystals are, 
despite all appearances, made of ordinary 
water. Their starkly different properties, 
he suggested, reflect internal changes in 
which “the humour or juices [in the water] 
were shut up in definite cavities” by various 
geophysical processes. This particular idea 
seems silly to us now, yet we also know that 
Gilbert’s essential insight was correct; the 
manifold transformations of physical matter 
between liquid, solid and gas, between 
different crystalline phases or many other 
more exotic phases, often reflect not changes 
in the constituent particles, but in their 
collective organization.

Indeed, we know immeasurably more 
today than Gilbert could have imagined 
about such phase transitions, and they 
occupy a special place in science because of 
their crucial relevance in condensed-matter 
physics, as well as in astrophysics, cosmology, 
geophysics, molecular biology and even the 
study of traffic flows. Even so, 400 years after 
Gilbert, we may still have a lot to learn.

There is much theoretical literature 
on phase transitions, largely devoted to 
their proper taxonomy and to methods for 
calculating their precise properties. In a 
system of interacting particles, according 
to the developed view, it is a singularity 
in some thermodynamic quantity that 
signals the existence of a phase transition. 
For example, a piece of iron is heated and 
its magnetic susceptibility diverges when 
the temperature approaches 770 K. The 
nature of this particular transformation — a 
continuous phase transition — is known 
in exquisite detail through the beautiful 
theory of critical phenomena. Among its 
more remarkable implications is that of 
universality — the insensitivity of physics in 
the critical regime to many of the details of 
the microscopic interactions, which implies 
not only that widely different systems reveal 
strikingly similar behaviour, but that even 

crude models can produce extraordinarily 
accurate predictions.

These results issue in part from the 
application of powerful renormalization 
group methods, which have been developed 
with spectacular success and show every 
sign of being extended to systems away 
from equilibrium — to phase transitions 
induced by noise, for example. Still, all this 
understanding rests on the framework of 
statistical mechanics, and its essential reliance 
on a perspective based on probabilities. What 
about the precise dynamics? It’s natural to 
wonder if, in a system of interacting particles 
following purely classical dynamics, for 
example, a phase transition might also reflect 

some abrupt qualitative transformation in the 
nature of the particle trajectories.

This idea undoubtedly has a long history, 
and before Boltzmann’s introduction of 
statistical hypotheses, would probably have 
been the default conceptual perspective of 
most theorists. But its detailed exploration, 
surprisingly, has only advanced in the past 
decade, stimulated by the suggestion that 
topology may play a crucial role. Take a 
system with a hamiltonian of the standard 
form H = ½Σpi

2 + V(q1,…,qN), with V being 
the N-particle potential energy. Around 
1997 Marco Pettini and colleagues first 
suggested that phase transitions for such a 
system might be linked to abrupt topological 
changes in the system configuration 
space, specifically in the sets Mv defined 
to contain all points in the configuration 
space for which V is less than some value v. 
Suggestively, early numerical simulations 
of models exhibiting phase transitions 
showed cusp-like or discontinuous changes 

in several topological measures of these 
dynamically important sets.

Based on these initial results, some 
physicists speculated that it might be 
possible to give a general and complete 
explanation of phase transitions in terms of 
topological changes in dynamics. This was 
a little premature. But, as Michael Kastner 
argues in a forthcoming review, recent 
studies, while showing that this conjecture 
doesn’t hold, also support the value of the 
general idea (Rev. Mod. Phys. in the press; 
arXiv:cond-mat/0703401v1, 2007). It now 
seems that topology does give strong signals 
of phase transitions, but that features vary 
from one problem to another in a more 
delicate way. In systems with a finite number 
of particles, indeed, any topological change 
in the sets Mv does seems to be linked to an 
associated phase transition, reflected in a 
singularity in the system’s (microcanonical) 
entropy. In any infinite system, however, 
topological changes in the Mv are necessary 
but not sufficient for a phase transition, at 
least in the context of short-range particle 
interactions of the type usually considered 
in statistical physics.

A fascinating aspect of this work is 
its reliance on mathematics suited to the 
description of topology, particularly so-
called Morse theory. Morse theory traces 
topological changes in manifolds by 
considering functions defined on them; in 
this case, changes in the configuration space 
with the function V defined on it. The theory 
has a disarming simplicity in that topological 
changes can be followed in terms of critical 
points of this function — akin to nodes, 
saddle points and so on — which serves 
to render questions of topology into more 
tractable and familiar analytical terms. A 
quantity known as the Euler characteristic, 
for example, because it is known to be a 
topological invariant, can be monitored in 
numerical simulations as a key flag signalling 
abrupt topological changes.

I suppose this way of thinking might 
be criticized with the old naive argument 
that “we already have a theory for that”. 
But it explores the nature of phase 
transformations from a complementary 
point of view, and for that reason may 
ultimately pay handsome intellectual 
dividends. We still cannot say with 
precision what are the necessary conditions 
for a system to exhibit a phase transition, 
and that doesn’t seem like too much to ask. 
One day soon we may be able to answer.
� Mark�Buchanan

It’s just a phase…

We still cannot say what are 
the conditions for a system 
to exhibit a phase transition, 
and that doesn’t seem like too 
much to ask.
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