Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrohydrodynamic tip streaming and emission of charged drops from liquid cones

Abstract

When a liquid is subject to a sufficiently strong electric field, it can be induced to emit thin fluid jets from conical tip structures that form at its surface. Such behaviour has both fundamental and practical implications, from raindrops in thunderclouds to pendant drops in electrospray mass spectrometry. But the large difference in length scales between these microscopic/nanoscopic jets and the macroscopic drops and films from which they emerge has made it difficult to model the electrohydrodynamic (EHD) processes that govern such phenomena. Here, we report simulations and experiments that enable a comprehensive picture of the mechanisms of cone formation, jet emission and break-up that occur during EHD tip streaming from a liquid film of finite conductivity. Simulations show that EHD tip streaming does not occur if the liquid is perfectly conducting or perfectly insulating, and enable us to develop a scaling law to predict the size of the drops produced from jet break-up.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: EHD tip streaming from a planar film.
Figure 2: Curvatures and shapes of liquid films.
Figure 3: Flow and electric fields and stresses near the conic cusping singularity for a conducting film and at the inception of tip streaming for a leaky-dielectric film.
Figure 4: Scaling of drop size in EHD tip streaming.

References

  1. Gilbert, W. De Magnete (Dover, 1958) (First published in Latin in 1600 and translated by P. F. Mottelay in 1893).

    Google Scholar 

  2. Zeleny, J. Instability of electrified liquid surfaces. Phys. Rev. 10, 1–6 (1917).

    ADS  Article  Google Scholar 

  3. Taylor, G. I. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383–397 (1964).

    ADS  Article  Google Scholar 

  4. Cloupeau, M. & Prunet-Foch, B. Electrostatic spraying of liquids in cone-jet mode. J. Electrostat. 22, 135–159 (1989).

    Article  Google Scholar 

  5. Achtzehn, T., Müller, R. & Leisner, T. The Coulombic instability of charged microdroplets: Dynamics and scaling. Eur. Phys. J. D 34, 311–313 (2005).

    ADS  Article  Google Scholar 

  6. Fenn, J., Mann, M., Meng, C., Wong, S. & Whitehouse, C. Electrospray ionization for mass-spectrometry of large biomolecules. Science 246, 64–71 (1989).

    ADS  Article  Google Scholar 

  7. Ptasinski, K. J. & Kerkhof, P. J. A. M. Electric-field driven separations—phenomena and applications. Sep. Sci. Technol. 27, 995–1021 (1992).

    Article  Google Scholar 

  8. Harris, M. T., Scott, T. C. & Byers, C. H. The synthesis of metal hydrous oxide particle by multiphase electrodispersion. Mater. Sci. Eng. A 168, 125–129 (1993).

    Article  Google Scholar 

  9. Barrero, A. & Loscertales, I. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).

    ADS  Article  Google Scholar 

  10. Fernández de la Mora, J. The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217–243 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  11. Mestel, A. J. The electrohydrodynamic cone-jet at high Reynolds number. J. Aerosol Sci. 25, 1037–1047 (1994).

    ADS  Article  Google Scholar 

  12. Shtern, V. & Barrero, A. Striking features of fluid-flows in Taylor cones related to electrosprays. J. Aerosol Sci. 25, 1049–1063 (1994).

    ADS  Article  Google Scholar 

  13. Fernández de la Mora, J. F. & Loscertales, I. The current emitted by highly conducting Taylor cones. J. Fluid Mech. 260, 155–184 (1994).

    ADS  Article  Google Scholar 

  14. Gañán-Calvo, A. M. Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett. 79, 217–220 (1997).

    ADS  Article  Google Scholar 

  15. Gañán-Calvo, A. M., Dávila, J. & Barrero, A. Current and droplet size in the electrospraying of liquids. Scaling laws. J. Aerosol Sci. 28, 249–275 (1997).

    ADS  Article  Google Scholar 

  16. Cherney, L. T. Electrohydrodynamics of electrified liquid menisci and emitted jets. J. Aerosol Sci. 30, 851–862 (1999).

    ADS  Article  Google Scholar 

  17. Higuera, F. Flow rate and electric current emitted by a Taylor cone. J. Fluid Mech. 484, 303–327 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  18. Gañán-Calvo, A. M. On the general scaling theory for electrospraying. J. Fluid Mech. 507, 203–212 (2004).

    ADS  Article  Google Scholar 

  19. López-Herrera, J. M., Gañán-Calvo, A. M. & Perez-Saborid, M. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Applications to E.H.D. spraying. J. Aerosol Sci. 30, 895–912 (1999).

    ADS  Article  Google Scholar 

  20. López-Herrera, J. M. & Gañán-Calvo, A. M. A note on charged capillary jet breakup of conducting liquids: Experimental validation of a viscous one-dimensional model. J. Fluid Mech. 501, 303–326 (2004).

    ADS  Article  Google Scholar 

  21. Collins, R. T. Deformation and Breakup of Liquid Films, Jets and Drops in Electric Fields. Thesis, Purdue Univ. (2007).

  22. Melcher, J. R. & Taylor, G. I. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111–146 (1969).

    ADS  Article  Google Scholar 

  23. Saville, D. A. Electrohydrodynamics: The Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 27–64 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  24. Chen, A. U., Notz, P. K. & Basaran, O. A. Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 88, 4501 (2002).

    ADS  Google Scholar 

  25. Suryo, R. & Basaran, O. A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 18, 082102 (2006).

    ADS  Article  Google Scholar 

  26. Notz, P. K. & Basaran, O. A. Dynamics of drop formation in an electric field. J. Colloid Interface Sci. 213, 218–237 (1999).

    ADS  Article  Google Scholar 

  27. Reznik, S. N., Yarin, A. L., Theron, A. & Zussman, E. Transient and steady shapes of droplets attached to a surface in a strong electric field. J. Fluid Mech. 516, 349–377 (2004).

    ADS  Article  Google Scholar 

  28. Zubarev, N. M. Formation of conic cusps at the surface of liquid metal in electric field. JETP Lett. 73, 544–548 (2001).

    ADS  Article  Google Scholar 

  29. Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71, 3458–3460 (1993).

    ADS  Article  Google Scholar 

  30. Lister, J. R. & Stone, H. A. Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10, 2758–2764 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  31. Hayati, I., Bailey, A. I. & Tadros, T. F. Mechanism of stable jet formation in electrohydrodynamic atomization. Nature 319, 41–43 (1986).

    ADS  Article  Google Scholar 

  32. Gamero-Castaño, M. & Hruby, V. Electric measurements of charged sprays emitted by cone-jets. J. Fluid Mech. 459, 245–276 (2002).

    ADS  Article  Google Scholar 

  33. Grimm, R. & Beauchamp, J. Dynamics of field-induced droplet ionization: Time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields. J. Phys. Chem. B 109, 8244–8250 (2005).

    Article  Google Scholar 

  34. Marín, A., Loscertales, I., Marquez, M. & Barrero, A. Simple and double emulsions via coaxial jet electrosprays. Phys. Rev. Lett. 98, 014502 (2007).

    ADS  Article  Google Scholar 

  35. Gañán-Calvo, A. M. Electro-flow focusing: The high-conductivity low-viscosity limit. Phys. Rev. Lett. 98, 134503 (2007).

    ADS  Article  Google Scholar 

  36. Taylor, G. I. & McEwan, A. D. The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech. 22, 1–15 (1965).

    ADS  Article  Google Scholar 

  37. Oddershede, L. & Nagel, S. R. Singularity during the onset of an electrohydrodynamic spout. Phys. Rev. Lett. 85, 1234–1237 (2000).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shreve Trust Fund at Purdue University and the BES Program of US DOE.

Author information

Authors and Affiliations

Authors

Contributions

R.T.C.: theoretical and numerical work, article writing; J.J.J.: experimental work; M.T.H.: project planning; O.A.B.: theoretical work, project planning, article writing.

Corresponding author

Correspondence to Osman A. Basaran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Collins, R., Jones, J., Harris, M. et al. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature Phys 4, 149–154 (2008). https://doi.org/10.1038/nphys807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing