Abstract
The electronic structure of graphene causes its charge carriers to behave like relativistic particles. For a perfect graphene sheet free from impurities and disorder, the Fermi energy lies at the so-called ‘Dirac point’, where the density of electronic states vanishes. But in the inevitable presence of disorder, theory predicts that equally probable regions of electron-rich and hole-rich puddles will arise. These puddles could explain graphene’s anomalous non-zero minimal conductivity at zero average carrier density. Here, we use a scanning single-electron transistor to map the local density of states and the carrier density landscape in the vicinity of the neutrality point. Our results confirm the existence of electron–hole puddles, and rule out extrinsic substrate effects as explanations for their emergence and topology. Moreover, we find that, unlike non-relativistic particles the density of states can be quantitatively accounted for by considering non-interacting electrons and holes.
This is a preview of subscription content, access via your institution
Access options
Similar content being viewed by others
References
Brandt, N. B., Chudinov, S. M. & Ponomarev, Y. G. Semimetals 1, Graphite and Its Compounds (North-Holland, Amsterdam, 1988).
Semenoff, G. W. Condensed-matter simulation of a three dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).
Zhou, S. Y. et al. First direct observation of Dirac fermions in graphite. Nature Phys. 2, 595–599 (2006).
Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Phys. 3, 36–40 (2007).
Fetter, A. L. & Walecka, J. D. Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971).
Bello, M. S., Levin, E. I., Shklovskii, B. I. & Efros, A. L. Density of localized states in the surface impurity band of a metal-insulator-semiconductor structure. Sov. Phys. JETP 53, 822–829 (1981).
Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Compressibility of the two-dimensional electron gas: Measurements of the zero-field exchange energy and fractional quantum Hall gap. Phys. Rev. B 50, 1760–1778 (1994).
Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Coulomb interactions and ferromagnetism in pure and doped graphene. Phys. Rev. B 72, 174406 (2005).
Barlas, Y., Pereg-Barnea, T., Polini, M., Asgari, R. & MacDonald, A. H. Chirality and correlations in graphene. Phys. Rev. Lett. 98, 236601–236604 (2007).
Hwang, E. H., Hu, B. Y.-K. & Das Sarma, S. Density dependent exchange contribution to δμ/δn in extrinsic graphene. Preprint at <http://www.arxiv.org/cond-mat/0703499v1> (2007).
Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992).
Millard, S. et al. Effect of finite quantum well width on the compressibility of a two-dimensional electron gas. Phys. Rev. B 55, 6715–1618 (1997).
Shapira, S. et al. Thermodynamics of a charged fermion layer at high r s values. Phys. Rev. Lett. 77, 3181–3184 (1996).
Kravchenko, S. V., Ringberg, D. A., Semenchinsky, S. G. & Pudalov, V. M. Evidence for the influence of electron–electron interaction on the chemical potential of the two-dimensional electron gas. Phys. Rev. B 42, 3741–3744 (1990).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Novoselov, K. S. et al. Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).
Sheng, D. N., Sheng, L. & Sheng, Z. Y. Quantum Hall effect in graphene: disorder effect and phase diagram. Phys. Rev. B 73, 233406 (2006).
Khveschenko, D. V. Electron localization properties in graphene. Phys. Rev. Lett. 97, 036802–036805 (2006).
Ziegler, K. Robust transport properties in graphene. Phys. Rev. Lett. 97, 266802–266805 (2006).
Ostrovsky, P. M., Gornyi, I. V. & Mirlin, A. D. Electron transport in disordered graphene. Phys. Rev. B 74, 235443 (2006).
Aleiner, I. L. & Efetov, K. B. Effect of disorder on transport in graphene. Phys. Rev. Lett. 97, 236801–236804 (2006).
Hwang, E. H., Adam, S. & Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98, 186806–186809 (2007).
Nomura, K. & MacDonald, A. H. Quantum transport of massless Dirac fermions in graphene. Phys. Rev. Lett. 98, 076602–076605 (2007).
Cheianov, V. & Fal’ko, V. I. Friedel oscillations, impurity scattering and temperature dependence of resistivity in graphene. Phys. Rev. Lett. 97, 226801–226804 (2006).
McCann, E. et al. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805–146809 (2006).
Gonzales, J., Guinea, F. & Vozmediano, M. A. H. Electron–electron interactions in graphene sheets. Phys. Rev. B. 63, 134421 (2001).
Castro Neto, A. H. & Kim, E.-A. Charge inhomogeneity and the structure of graphene sheets. Preprint at <http://www.arxiv.org/cond-mat/0702562v1> (2007).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).
Matsui, T. et al. STS observations of Landau levels at graphite surfaces. Phys. Rev. Lett. 94, 226403–226406 (2005).
Niimi, Y., Kambara, H., Matsui, T., Yoshioka, D. & Fukuyama, H. Real-space imaging of alternate localization and extension of quasi-two-dimensional electronic states at graphite surfaces in magnetic fields. Phys. Rev. Lett. 97, 236804–236807 (2006).
Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73, 085421 (2006).
Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).
Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).
Yoo, M. J. et al. Scanning single-electron transistor microscopy: Imaging individual charges. Science 276, 579–582 (1997).
Yacoby, A., Hess, H. F., Fulton, T. A., Pfeiffer, L. N. & West, K. W. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).
Jiang, Z. et al. Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403–197407 (2007).
Cheianov, V. V., Fal’ko, V. I., Altschuler, B. L. & Aleiner, I. L. Random resistor network model of minimal conductivity in graphene. Phys. Rev. Lett. 99, 176801 (2007).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
Katnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).
Cho, S. & Fuhrer, M. S. Charge transport and inhomogeneity near the charge neutrality point in graphene. Preprint at <http://www.arxiv.org/abs/0705.3239> (2007).
Prange, R. E. & Girvin, S. M. The Quantum Hall Effect (Springer, New York, 1990).
Ilani, S. et al. The microscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004).
Acknowledgements
We acknowledge helpful discussions on the preparation of graphene flakes with K. Novoselov and A. Geim. We would also like to acknowledge fruitful discussions with F. von Oppen.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Material (PDF 58 kb)
Rights and permissions
About this article
Cite this article
Martin, J., Akerman, N., Ulbricht, G. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys 4, 144–148 (2008). https://doi.org/10.1038/nphys781
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys781
This article is cited by
-
Optical readout of the chemical potential of two-dimensional electrons
Nature Photonics (2024)
-
Electron beam lithography on nonplanar and irregular surfaces
Microsystems & Nanoengineering (2024)
-
Experimental sensing quantum atmosphere of a single spin
Quantum Frontiers (2024)
-
Electronic signatures of Lorentzian dynamics and charge fluctuations in lithiated graphite structures
Nature Communications (2023)
-
Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene
Nature (2023)