Article | Published:

A single-photon transistor using nanoscale surface plasmons

Nature Physics volume 3, pages 807812 (2007) | Download Citation

Abstract

Photons rarely interact—which makes it challenging to build all-optical devices in which one light signal controls another. Even in nonlinear optical media, in which two beams can interact because of their influence on the medium’s refractive index, this interaction is weak at low light levels. Here, we propose a novel approach to realizing strong nonlinear interactions at the single-photon level, by exploiting the strong coupling between individual optical emitters and propagating surface plasmons confined to a conducting nanowire. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using conventional quantum-optical techniques. Furthermore, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence (or absence) of a single incident photon in a ‘gate’ field is sufficient to allow (or prevent) the propagation of subsequent ‘signal’ photons along the wire.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Nonlinear Optics (Academic, New York, 1992).

  2. 2.

    Optical Bistability: Controlling Light with Light (Academic, Orlando, 1985).

  3. 3.

    Bouwmeester, D., Ekert, A. & Zeilinger, A. (eds) The Physics of Quantum Information (Springer, Berlin, 2000).

  4. 4.

    & Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

  5. 5.

    Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).

  6. 6.

    & Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611–3614 (1998).

  7. 7.

    Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

  8. 8.

    , & Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

  9. 9.

    Vahala, K. (ed.) Optical Microcavities (World Scientific, Singapore, 2004).

  10. 10.

    et al. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B 38, S551–S565 (2005).

  11. 11.

    & Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

  12. 12.

    et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

  13. 13.

    & Dipole induced transparency in drop filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006).

  14. 14.

    , , , & Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, 043818 (2006).

  15. 15.

    , , & Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

  16. 16.

    The promise of plasmonics. Sci. Am. 296, 56–63 (2007).

  17. 17.

    , & All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

  18. 18.

    Plasmonics: Fundamentals and Applications (Springer, New York, 2006).

  19. 19.

    , , , & Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1998).

  20. 20.

    & Light in tiny holes. Nature 445, 39–46 (2007).

  21. 21.

    , & A model of an apertureless scanning microscope with a prolate nanospheriod as a tip and an excited molecule as an object. Chem. Phys. Lett. 358, 192–198 (2002).

  22. 22.

    , , & Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys. Rev. Lett. 94, 057401 (2005).

  23. 23.

    et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

  24. 24.

    & Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

  25. 25.

    , , & Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).

  26. 26.

    , & Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93, 036404 (2004).

  27. 27.

    , , , & Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005).

  28. 28.

    , , & Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).

  29. 29.

    , & Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt. Express 12, 1025–1035 (2004).

  30. 30.

    et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15, 5431–5438 (2007).

  31. 31.

    & Elements of Quantum Optics 3rd edn (Springer, New York, 1999).

  32. 32.

    & Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001–2003 (2005).

  33. 33.

    , , & Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field. Phys. Rev. A 68, 013803 (2003).

  34. 34.

    & Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007).

  35. 35.

    , & Quantum interference and collapse of the wavefunction in cavity QED. Opt. Commun. 82, 73–79 (1991).

  36. 36.

    , , & Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

  37. 37.

    , , , & Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007).

  38. 38.

    & Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

  39. 39.

    , , & Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl. Phys. Lett. 86, 071103 (2005).

  40. 40.

    et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

  41. 41.

    , , & Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).

  42. 42.

    & Boundary interaction changing operators and dynamical correlations in quantum impurity problems. Phys. Rev. Lett. 80, 4370–4373 (1998).

  43. 43.

    Pure-state analysis of resonant light scattering: Radiative damping, saturation, and multiphoton effects. Phys. Rev. A 12, 1919–1943 (1975).

Download references

Acknowledgements

We thank A. Akimov, A. Mukherjee, V. Gritsev, M. Loncar and H. Park for useful discussions. This work was supported by the NSF (Career and NIRT programs), Harvard-MIT CUA and the Danish Natural Science Research Council.

Author information

Affiliations

  1. Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

    • Darrick E. Chang
    • , Eugene A. Demler
    •  & Mikhail D. Lukin
  2. QUANTOP, Danish Quantum Optics Center and Niels Bohr Institute, DK-2100 Copenhagen Ø, Denmark

    • Anders S. Sørensen

Authors

  1. Search for Darrick E. Chang in:

  2. Search for Anders S. Sørensen in:

  3. Search for Eugene A. Demler in:

  4. Search for Mikhail D. Lukin in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mikhail D. Lukin.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys708

Further reading