Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Self-similarity in ultrafast nonlinear optics

Abstract

Recent developments in nonlinear optics have led to the discovery of a new class of ultrashort pulse, the ‘optical similariton’. Optical similaritons arise when the interaction of nonlinearity, dispersion and gain in a high-power fibre amplifier causes the shape of an arbitrary input pulse to converge asymptotically to a pulse whose shape is self-similar. In comparison with optical solitons, which rely on a delicate balance of nonlinearity and anomalous dispersion and which can become unstable with increasing intensity, similaritons are more robust at high pulse powers. The simplicity and widespread availability of the components needed to build a self-similar amplifier capable of producing optical similaritons provides a convenient experimental platform to explore the fundamental nature of dynamical self-similarity. Here, we provide an overview of self-similar pulse propagation and scaling in optical fibre amplifiers, and their use in the development of high-power ultrafast optical sources, pulse synthesis and all-optical pulse regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphical representation of generic similariton characteristics.
Figure 2: Phase-space portrait of different evolution trajectories of optical pulses in a self-similar amplifier.
Figure 3: Simulated pulse evolution of propagation in fibre amplifiers comparing self-similar evolution with soliton fission.
Figure 4: Similariton evolution in a 9-m-long erbium fibre amplifier.

© 2005 OSA

Figure 5: Few-cycle pulse generation around 1,550 nm through the combination of nonlinear similariton and soliton dynamics.

© 2006 IEEE

Similar content being viewed by others

References

  1. Galileo, G. Dialogues Concerning Two New Sciences (Crew, H. & de Salvio, A. translators) 1–5 (MacMillan, New York, 1914).

    MATH  Google Scholar 

  2. Lord Rayleigh, The principle of similitude. Nature 95, 66–68 (1915).

    Article  Google Scholar 

  3. Riabouchinsky, D. Nature 95, 591 (1915).

    Article  ADS  Google Scholar 

  4. Lord Rayleigh, Nature 95, 644 (1915).

    Article  ADS  Google Scholar 

  5. Buckingham, E. The principle of similitude. Nature 96, 396–397 (1915).

    Article  ADS  MATH  Google Scholar 

  6. Buckingham, E. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914).

    Article  ADS  Google Scholar 

  7. Macagno, E. O. Historico-critical review of dimensional analysis. J. Franklin Inst. 292, 391–402 (1971).

    Article  MathSciNet  Google Scholar 

  8. Barenblatt, G. I. Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge Univ. Press, Cambridge, 1996).

    Book  MATH  Google Scholar 

  9. Mandelbrot, B. The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  10. Song, C., Havlin, S. & Makse, H. A. Self-similarity of complex networks. Nature 433, 392–394 (2005).

    Article  ADS  Google Scholar 

  11. Taylor, G. I. The formation of a blast wave by a very intense explosion. I: Theoretical discussion. Proc. R. Soc. Lond. A 201, 159–174 (1950).

    Article  ADS  MATH  Google Scholar 

  12. Taylor, G. I. The formation of a blast wave by a very intense explosion. II: The atomic explosion of 1945. Proc. R. Soc. Lond. A 201, 175–186 (1950).

    Article  ADS  MATH  Google Scholar 

  13. Olver, P. J. Applications of Lie Groups to Differential Equations 2nd edn (Graduate Texts in Mathematics, Vol. 107, Springer, New York, 1993).

    Book  MATH  Google Scholar 

  14. Sachdev, P. L. Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems (CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman and Hall, London, 2000).

    Book  MATH  Google Scholar 

  15. Ikeda, K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257–261 (1979).

    Article  ADS  Google Scholar 

  16. Uchida, A., Rogister, F., Garcia-Ojalvo, J. & Roy, R. Synchronization and communication with chaotic laser systems. Prog. Opt. 48, 203–341 (2005).

    Article  ADS  Google Scholar 

  17. Argyris, A. et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 437, 343–346 (2005).

    Article  ADS  Google Scholar 

  18. Afanas’ev, A. A., Kruglov, V. I., Samson, B. A., Jakyte, R. & Volkov, V. M. Self-action of counterpropagating axially symmetrical light beams in a transparent cubic-nonlinearity medium. J. Mod. Opt. 38, 1189–1202 (1991).

    Article  ADS  Google Scholar 

  19. Kruglov, V. I., Logvin, Y. A. & Volkov, V. M. The theory of spiral laser-beams in nonlinear media. J. Mod. Opt. 39, 2277–2291 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dyachenko, S., Newell, A. C., Pushkarev, A. & Zakharov, V. E. Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Physica D 57, 96–160 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Moll, K. D., Gaeta, A. L. & Fibich, G. Self-similar optical wave collapse: Observation of the Townes profile. Phys. Rev. Lett. 90, 203902 (2003).

    Article  ADS  Google Scholar 

  22. Gaeta, A. L. Collapsing light really shines. Science 301, 54–55 (2003).

    Article  Google Scholar 

  23. Menyuk, C. R., Levi, D. & Winternitz, P. Self similarity in transient stimulated Raman scattering. Phys. Rev. Lett. 69, 3048–3051 (1992).

    Article  ADS  Google Scholar 

  24. Soljacic, M., Segev, M. & Menyuk, C. R. Self-similarity and fractals in soliton-supporting systems. Phys. Rev. E 61, R1048–R1051 (2000).

    Article  ADS  Google Scholar 

  25. Sears, S., Soljacic, M., Segev, M., Krylov, D. & Bergman, K. Cantor set fractals from solitons. Phys. Rev. Lett. 84, 1902–1905 (2000).

    Article  ADS  Google Scholar 

  26. Karman, G. P., McDonald, G. S., New, G. H. C. & Woerdman, J. P. Laser optics: Fractal modes in unstable resonators. Nature 402, 138 (1999).

    Article  ADS  Google Scholar 

  27. Berry, M. V., Marzoli, I. & Schleich, W. P. Quantum carpets, carpets of light. Phys. World 14, 39–44 (2001).

    Article  Google Scholar 

  28. Courtial, J., Leach, J. & Padgett, M. J. Fractals in pixellated video feedback. Nature 414, 864 (2001).

    Article  ADS  Google Scholar 

  29. Huang, J. G. & McDonald, G. S. Spontaneous optical fractal pattern formation. Phys. Rev. Lett. 94, 174101 (2005).

    Article  ADS  Google Scholar 

  30. An, S. & Sipe, J. E. Universality in the dynamics of phase grating formation in optical fibers. Opt. Lett. 16, 1478–1480 (1991).

    Article  ADS  Google Scholar 

  31. Kewitsch, A. S. & Yariv, A. Self-focusing and self-trapping of optical beams upon photopolymerization. Opt. Lett. 21, 24–26 (1996).

    Article  ADS  Google Scholar 

  32. Monro, T. M., Miller, P. D., Poladian, L. & de Sterke, C. M. Self-similar evolution of self-written waveguides. Opt. Lett. 23, 268–270 (1998).

    Article  ADS  Google Scholar 

  33. Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M. & Harvey, J. D. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 84, 6010–6013 (2000).

    Article  ADS  Google Scholar 

  34. Kruglov, V. I., Peacock, A. C., Dudley, J. M. & Harvey, J. D. Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers. Opt. Lett. 25, 1753–1755 (2000).

    Article  ADS  Google Scholar 

  35. Kruglov, V. I., Peacock, A. C., Harvey, J. D. & Dudley, J. M. Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers. J. Opt. Soc. Am. B 19, 461–469 (2002).

    Article  ADS  Google Scholar 

  36. Boscolo, S., Turitsyn, S. K., Novokshenov, V. Y. & Nijhof, J. H. B. Self-similar parabolic optical solitary waves. Theor. Math. Phys. 133, 1647–1656 (2002).

    Article  MATH  Google Scholar 

  37. Agrawal, G. P. Nonlinear Fiber Optics 4th edn (Academic, Boston, 2007).

    MATH  Google Scholar 

  38. Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

    Article  ADS  Google Scholar 

  39. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  40. Kodama, Y. & Hasegawa, A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quant. Electron. QE-23, 510–524 (1987).

    Article  ADS  Google Scholar 

  41. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  42. Tomlinson, W. J., Stolen, R. H. & Johnson, A. M. Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459 (1985).

    Article  ADS  Google Scholar 

  43. Rosenberg, C. J., Anderson, D., Desaix, M., Johannisson, P. & Lisak, M. Evolution of optical pulses towards wave breaking in highly nonlinear fibres. Opt. Commun. 273, 272–277 (2007).

    Article  ADS  Google Scholar 

  44. Anderson, D., Desaix, M., Karlson, M., Lisak, M. & Quiroga-Teixeiro, M. L. Wave-breaking-free pulses in nonlinear optical fibers. J. Opt. Soc. Am. B 10, 1185–1190 (1993).

    Article  ADS  Google Scholar 

  45. Tamura, K. & Nakazawa, M. Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. Opt. Lett. 21, 68–70 (1996).

    Article  ADS  Google Scholar 

  46. Trebino, R. Frequency-Resolved Optical Gating. The Measurement of Ultrashort Laser Pulses (Kluwer Academic, Dordrecht, 2002).

    Google Scholar 

  47. Kruglov, V. I. & Harvey, J. D. Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters. J. Opt. Soc. Am. B 23, 2541–2550 (2006).

    Article  ADS  Google Scholar 

  48. Finot, C. Influence of the pumping configuration on the generation of optical similaritons in optical fibers. Opt. Commun. 249, 553–561 (2005).

    Article  ADS  Google Scholar 

  49. Finot, C., Parmigiani, F., Petropoulos, P. & Richardson, D. J. Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime. Opt. Express 14, 3161–3170 (2006).

    Article  ADS  Google Scholar 

  50. Wabnitz, S. Analytical dynamics of parabolic pulses in nonlinear optical fiber amplifiers. IEEE Photon. Technol. Lett. 19, 507–509 (2007).

    Article  ADS  Google Scholar 

  51. Finot, C., Millot, G., Billet, C. & Dudley, J. M. Experimental generation of parabolic pulses via Raman amplification in optical fiber. Opt. Express 11, 1547–1552 (2003).

    Article  ADS  Google Scholar 

  52. Peacock, A. C., Broderick, N. G. R. & Monro, T. M. Numerical study of parabolic pulse generation in microstructured fibre Raman amplifiers. Opt. Commun. 218, 167–172 (2003).

    Article  ADS  Google Scholar 

  53. Ozeki, Y., Takushima, Y., Aiso, K., Taira, K. & Kikuchi, K. Generation of 10 GHz similariton pulse trains from 1.2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources. Electron. Lett. 40, 1103–1104 (2004).

    Article  Google Scholar 

  54. Peacock, A. C., Kruhlak, R. J., Harvey, J. D. & Dudley, J. M. Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion. Opt. Commun. 206, 171–177 (2002).

    Article  ADS  Google Scholar 

  55. Chang, G., Galvanauskas, A., Winful, H. G. & Norris, T. B. Dependence of parabolic pulse amplification on stimulated Raman scattering and gain bandwidth. Opt. Lett. 29, 2647–2649 (2004).

    Article  ADS  Google Scholar 

  56. Soh, D. B. S., Nilsson, J. & Grudinin, A. B. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. I. Stimulated Raman-scattering effects. J. Opt. Soc. Am. B 23, 1–9 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  57. Soh, D. B. S., Nilsson, J. & Grudinin, A. B. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect. J. Opt. Soc. Am. B 23, 10–19 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  58. Finot, C., Pitois, S., Millot, G., Billet, C. & Dudley, J. M. Numerical and experimental study of parabolic pulses generated via Raman amplification in standard optical fibers. IEEE J. Sel. Top. Quant. Electron. 10, 1211–1218 (2004).

    Article  Google Scholar 

  59. Zaouter, Y. et al. Third-order spectral phase compensation in parabolic pulse compression. Opt. Express 15, 9372–9377 (2007).

    Article  ADS  Google Scholar 

  60. Finot, C., Millot, G. & Dudley, J. M. Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers. Opt. Lett. 29, 2533–2535 (2004).

    Article  ADS  Google Scholar 

  61. Billet, C., Dudley, J. M., Joly, N. & Knight, J. C. Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm. Opt. Express 13, 3236–3241 (2005).

    Article  ADS  Google Scholar 

  62. Maine, P., Strickland, D., Bado, P., Pessot, M. & Mourou, G. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quant. Electron. 24, 398–403 (1988).

    Article  ADS  Google Scholar 

  63. Limpert, J. et al. High-power femtosecond Yb-doped fiber amplifier. Opt. Express 10, 628–638 (2002).

    Article  ADS  Google Scholar 

  64. Price, J. H. V. et al. Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source. Opt. Express 10, 382–387 (2002).

    Article  ADS  Google Scholar 

  65. Malinowski, A. et al. Ultrashort-pulse Yb3+ fiber based laser and amplifier system producing >25 W average power. Opt. Lett. 29, 2073–2075 (2004).

    Article  ADS  Google Scholar 

  66. Nicholson, J. W., Yablon, A. D., Westbrook, P. S., Feder, K. S. & Yan, M. F. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. Opt. Express 12, 3025–3034 (2004).

    Article  ADS  Google Scholar 

  67. Schreiber, T., Nielsen, C. K., Ortac, B., Limpert, J. & Tünnermann, A. Microjoule-level all-polarization-maintaining femtosecond fiber source. Opt. Lett. 31, 574–576 (2006).

    Article  ADS  Google Scholar 

  68. Dupriez, P. et al. High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs. Opt. Express 14, 9611–9616 (2006).

    Article  ADS  Google Scholar 

  69. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  70. Kibler, B., Billet, C., Ferriere, R. & Dudley, J. M. All-fiber source of 20 fs pulses at 1550 nm using two stage linear-nonlinear compression of parabolic similaritons. IEEE Photon. Technol. Lett. 18, 1831–1833 (2006).

    Article  ADS  Google Scholar 

  71. Ilday, F. Ö., Buckley, J. R., Lim, H., Wise, F. W. & Clark, W. G. Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser. Opt. Lett. 28, 1365–1367 (2003).

    Article  ADS  Google Scholar 

  72. Ilday, F. Ö., Buckley, J. R., Clark, W. G. & Wise, F. W. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902 (2004).

    Article  ADS  Google Scholar 

  73. Wise, F. W. Similariton lasers generate high energy femtosecond pulses. Opt. Photon. News 15, 45 (2004).

    Google Scholar 

  74. Nielsen, C. K. et al. Self-starting self-similar all-polarization maintaining Yb-doped fiber laser. Opt. Express 13, 9346–9351 (2005).

    Article  ADS  Google Scholar 

  75. Ruehl, A., Hundertmark, H., Wandt, D., Fallnich, C. & Kracht, D. 0.7 W all-fiber erbium oscillator generating 64 fs wave breaking-free pulses. Opt. Express 13, 6305–6309 (2005).

    Article  ADS  Google Scholar 

  76. Ortac, B., Hideur, A., Chedot, C., Martel, G. & Limpert, J. Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser. Appl. Phys. B 85, 63–68 (2006).

    Article  ADS  Google Scholar 

  77. Ilday, F. Ö., Wise, F. W. & Kärtner, F. X. Possibility of self-similar pulse evolution in a Ti-sapphire laser. Opt. Express 12, 2731–2738 (2004).

    Article  ADS  Google Scholar 

  78. Kalashnikov, V. L. et al. Approaching the microjoule frontier with femtosecond laser oscillators: Theory and comparison with experiment. New J. Phys. 7, 217 (2005).

    Article  ADS  Google Scholar 

  79. Bélanger, P. A. On the profile of pulses generated by fiber lasers: the highly-chirped positive dispersion regime (similariton). Opt. Express 14, 12174–12182 (2006).

    Article  ADS  Google Scholar 

  80. Ruehl, A. et al. Dynamics of parabolic pulses in an ultrafast fiber laser. Opt. Lett. 31, 2734–2736 (2006).

    Article  ADS  Google Scholar 

  81. Finot, C. & Millot, G. Synthesis of optical pulses by use of similaritons. Opt. Express 12, 5104–5109 (2004).

    Article  ADS  Google Scholar 

  82. Parmigiani, F. et al. Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Opt. Express 14, 7617–7622 (2006).

    Article  ADS  Google Scholar 

  83. Finot, C., Pitois, S. & Millot, G. Regenerative 40-Gbit/s wavelength converter based on similariton generation. Opt. Lett. 30, 1776–1778 (2005).

    Article  ADS  Google Scholar 

  84. Hirooka, T. & Nakazawa, M. Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation. J. Lightwave Technol. 24, 2530–2540 (2006).

    Article  ADS  Google Scholar 

  85. Parmigiani, F., Petropoulos, P., Ibsen, M. & Richardson, D. J. Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating. IEEE Photon. Technol. Lett. 18, 829–831 (2006).

    Article  ADS  Google Scholar 

  86. Hirooka, T. & Nakazawa, M. Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. Opt. Lett. 29, 498–500 (2004).

    Article  ADS  Google Scholar 

  87. Kibler, B. et al. Parabolic pulse generation in comb-like profiled dispersion decreasing fibre. Electron. Lett. 42, 965–966 (2006).

    Article  Google Scholar 

  88. Latkin, A. I., Turitsyn, S. K. & Sysoliatin, A. A. Theory of parabolic pulse generation in tapered fiber. Opt. Lett. 32, 331–333 (2007).

    Article  ADS  Google Scholar 

  89. Kruglov, V. I., Peacock, A. C. & Harvey, J. D. Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90, 113902 (2003).

    Article  ADS  Google Scholar 

  90. Kruglov, V. I., Mechin, D. & Harvey, J. D. Self-similar solutions of the generalized Schrödinger equation with distributed coefficients. Opt. Express 12, 6198–6207 (2004).

    Article  ADS  Google Scholar 

  91. Chen, S. & Yi, L. Chirped self-similar solutions of a generalized nonlinear Schrodinger equation model. Phys. Rev. E 71, 016606 (2005).

    Article  ADS  Google Scholar 

  92. Mechin, D., Im, S. H., Kruglov, V. I. & Harvey, J. D. Experimental demonstration of similariton pulse compression in a comblike dispersion-decreasing fiber amplifier. Opt. Lett. 31, 2106–2108 (2006).

    Article  ADS  Google Scholar 

  93. Finot, C., Provost, L., Petropoulos, P. & Richardson, D. J. Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. Opt. Express 15, 852–864 (2007).

    Article  ADS  Google Scholar 

  94. Serkin, V. N. & Hasegawa, A. Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000).

    Article  ADS  Google Scholar 

  95. Serkin, V. N. & Hasegawa, A. Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: Application for soliton dispersion managements. IEEE J. Sel. Top. Quant. Electron. 8, 418–431 (2002).

    Article  ADS  Google Scholar 

  96. Chang, G., Winful, H. G., Galvanauskas, A. & Norris, T. B. Self-similar parabolic beam generation and propagation. Phys. Rev. E 72, 016609 (2005).

    Article  ADS  Google Scholar 

  97. Ponomarenko, S. A. & Agrawal, G. P. Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006).

    Article  ADS  Google Scholar 

  98. Ponomarenko, S. A. & Agrawal, G. P. Optical similaritons in nonlinear waveguides. Opt. Lett. 32, 1659–1661 (2007).

    Article  ADS  Google Scholar 

  99. Drummond, P. D. & Kheruntsyan, K. V. Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose–Einstein condensate. Phys. Rev. A 63, 013605 (2001).

    Article  ADS  Google Scholar 

  100. Keçeli, M., Ilday, F. Ö. & Oktel, M. Ö. Ansatz from nonlinear optics applied to trapped Bose–Einstein condensates. Phys. Rev. A 75, 035601 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Our contributions to this field have benefited from valuable collaborations and discussions with numerous colleagues and friends. We extend thanks to J. D. Harvey, V. I. Kruglov, R. Leonhardt, B. C. Thomsen, A. C. Peacock, M. E. Fermann, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, L. Larger, C. Billet, B. Kibler, J. C. Knight and N. Joly. J.M.D. extends further thanks to M. Segev for sparking his interest in the wider aspects of optical self-similarity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Dudley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudley, J., Finot, C., Richardson, D. et al. Self-similarity in ultrafast nonlinear optics. Nature Phys 3, 597–603 (2007). https://doi.org/10.1038/nphys705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing