Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge-order-maximized momentum-dependent superconductivity

Abstract

Charge ordering and superconductivity are observed in the phase diagrams of a variety of materials such as NbSe3, layered transition-metal dichalcogenides and high-temperature copper oxide superconductors, low-dimensional organics, Ba1−xKxBiO3 and so forth. Although both conventional charge-density-wave (CDW) and superconducting transitions show an energy gap in the single-particle density of states at the Fermi level (EF), their physical properties are poles apart: insulating behaviour for the CDW and zero resistivity in superconductors. Consequently, these two ground states are believed to compete with each other. Here we provide evidence for maximized superconductivity at points in momentum (k) space that are directly connected by the CDW ordering vector. Temperature-dependent angle-resolved photoemission spectroscopy of 2H-NbSe2 across the CDW and superconducting transitions (TCDW33 K and Tc=7.2 K, respectively) shows CDW-induced spectral-weight depletion at the same Fermi-surface-crossing k points, which evolve into the largest superconducting gaps. These k points also show the highest electron–phonon coupling and lowest Fermi velocities. Our results demonstrate that charge order can boost superconductivity in an electron–phonon coupled system, in direct contrast to the prevailing view that it only competes with superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ARPES EF intensity maps above and below TCDW, and their difference map.
Figure 2: ARPES band-dispersion maps as a function of binding energy and momentum.
Figure 3: MDCs and EDCs across the transitions.
Figure 4: Mapping of special k points corresponding to the CDW and k-dependent superconducting gap.

Similar content being viewed by others

References

  1. Gruner, G. Density Waves in Solids (Addison-Wesley, Massachusetts, 1994).

    Google Scholar 

  2. Gabovich, A. M., Voitenko, A. I. & Ausloos, M. Charge- and spin-density waves in existing superconductors: Competition between Cooper pairing and Peierls or excitonic instabilities. Phys. Rep. 367, 583–709 (2002).

    Article  ADS  Google Scholar 

  3. Schrieffer, J. R. Theory of Superconductivity (Perseus Books, Reading, 1964).

    MATH  Google Scholar 

  4. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  5. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  ADS  Google Scholar 

  6. Zhou, X. J. et al. One-dimensional electronic structure and suppression of d-wave node state in (La1.28Nd0.6Sr0.12)CuO4 . Science 286, 268–272 (1999).

    Article  Google Scholar 

  7. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  8. Howald, C., Eisaki, H., Kaneko, N., Greven, M. & Kapitulnik, A. Periodic density-of-states modulations in superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. B 67, 014533 (2003).

    Article  ADS  Google Scholar 

  9. Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

    Article  ADS  Google Scholar 

  10. Zaanen, J. et al. Towards a complete theory of high-Tc . Nature Phys. 2, 138–143 (2006).

    Article  Google Scholar 

  11. Perfetti, L. et al. Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2 . Phys. Rev. Lett. 90, 166401 (2003).

    Article  ADS  Google Scholar 

  12. Kaminski, A. et al. Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-Tc superconductor. Nature 416, 610–613 (2002).

    Article  ADS  Google Scholar 

  13. Valla, T. et al. Coherence–incoherence and dimensional crossover in layered strongly correlated metals. Nature 417, 627–630 (2002).

    Article  ADS  Google Scholar 

  14. Liu, R., Olson, C. G., Tonjes, W. C. & Frindt, R. F. Momentum dependent spectral changes induced by the charge density wave in 2H-TaSe2 and the implication on the CDW mechanism. Phys. Rev. Lett. 80, 5762–5765 (1998).

    Article  ADS  Google Scholar 

  15. Straub, Th. et al. Charge-density-wave mechanism in 2H-NbSe2: Photoemission results. Phys. Rev. Lett. 82, 4504–4507 (1999).

    Article  ADS  Google Scholar 

  16. Rossnagel, K. et al. Fermi surface of 2H-NbSe2 and its implications on the charge-density-wave mechanism. Phys. Rev. B 64, 235119 (2001).

    Article  ADS  Google Scholar 

  17. Valla, T. et al. Quasiparticle spectra, charge-density waves, superconductivity, and electron–phonon coupling in 2H-NbSe2 . Phys. Rev. Lett. 92, 086401 (2004).

    Article  ADS  Google Scholar 

  18. Morosan, E. et al. Superconductivity in CuxTiSe2 . Nature Phys. 2, 544–550 (2006).

    Article  ADS  Google Scholar 

  19. Qian, D. et al. Emergence of Fermi pockets in an excitonic CDW melted novel superconductor. Phys. Rev. Lett. 98, 117007 (2007).

    Article  ADS  Google Scholar 

  20. Zhao, J. F. et al. Evolution of the electronic structure of 1T-CuxTiSe2. Preprint at <http://www.arxiv.org/cond-mat/0612091> (2006).

  21. Du, C. H. et al. X-ray scattering studies of 2H-NbSe2, a superconductor and charge density wave material, under high external magnetic fields. J. Phys. Condens. Matter 12, 5361–5370 (2000).

    Article  ADS  Google Scholar 

  22. Yokoya, T. et al. Fermi surface sheet-dependent superconductivity in 2H-NbSe2 . Science 294, 2518–2520 (2001).

    Article  ADS  Google Scholar 

  23. Ayache, C., Currat, R., Hennion, B. & Molinié, P. Anomalous features of the CDW transition in metallic 2H dichalcogenides. J. Phys. IV 3, 125–128 (1993).

    Google Scholar 

  24. Iwaya, K. et al. Electronic state of NbSe2 investigated by STM/STS. Physica B 329–333, 1598–1599 (2003).

    Article  ADS  Google Scholar 

  25. Rice, T. M. & Scott, G. K. New mechanism for a charge-density-wave instability. Phys. Rev. Lett. 35, 120–123 (1975).

    Article  ADS  Google Scholar 

  26. Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Study of superlattice formation in 2H-NbSe2 and 2H-TaSe2 by neutron scattering. Phys. Rev. Lett. 34, 734–737 (1975).

    Article  ADS  Google Scholar 

  27. Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Neutron scattering study of the charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2 . Phys. Rev. B 16, 801–819 (1977).

    Article  ADS  Google Scholar 

  28. Mattheiss, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    Article  ADS  Google Scholar 

  29. Wexler, G. & Woolley, A. M. Fermi surfaces and band structures of the 2H metallic transition-metal dichalcogenides. J. Phys. C 9, 1185–1200 (1976).

    Article  ADS  Google Scholar 

  30. Corcoran, R. et al. Quantum oscillations in the mixed state of the type II superconductor 2H-NbSe2 . J. Phys. Condens. Matter 6, 4479–4492 (1994).

    Article  ADS  Google Scholar 

  31. Dardel, B. et al. Spectroscopic observation of charge-density-wave-induced changes in the electronic structure of 2H-TaSe2 . J. Phys. Condens. Matter 5, 6111–6119 (1993).

    Article  ADS  Google Scholar 

  32. Wang, C., Giambattista, B., Slough, C. G. & Coleman, R. V. Energy gaps measured by scanning tunneling microscopy. Phys. Rev. B 42, 8890–8906 (1990).

    Article  ADS  Google Scholar 

  33. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. Jr & Waszczak, J. V. Spectroscopic and spatial characterization of superconducting vortex core states with a scanning tunneling microscope. J. Vac. Sci. Technol. A 8, 450–454 (1990).

    Article  ADS  Google Scholar 

  34. Johannes, M. D., Mazin, I. I. & Howells, C. A. Fermi-surface nesting and the origin of the charge-density wave in NbSe2 . Phys. Rev. B 73, 205102 (2006).

    Article  ADS  Google Scholar 

  35. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093–R11096 (1998).

    Article  ADS  Google Scholar 

  36. Rodrigo, J. G. & Vieira, S. STM study of multiband superconductivity in NbSe2 using a superconducting tip. Physica C 404, 306–310 (2004).

    Article  ADS  Google Scholar 

  37. Nohara, M., Isshiki, M., Sakai, F. & Takagi, H. Quasiparticle density of states of clean and dirty s-wave superconductors in the vortex state. J. Phys. Soc. Jpn. 68, 1078–1081 (1999).

    Article  ADS  Google Scholar 

  38. Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001).

    Article  ADS  Google Scholar 

  39. Barnett, R. L., Polkovnikov, A., Demler, E., Yin, W. & Ku, W. Coexistence of gapless excitations and commensurate charge-density wave in the 2H transition metal dichalcogenides. Phys. Rev. Lett. 96, 026406 (2006).

    Article  ADS  Google Scholar 

  40. Gehring, G. A. & Gehring, K. A. Co-operative Jahn–Teller effects. Rep. Prog. Phys. 38, 1–89 (1975).

    Article  ADS  Google Scholar 

  41. Ong, N. P. Geometric interpretation of the weak-field Hall conductivity in two dimensional metals with arbitrary Fermi surface. Phys. Rev. B 43, 193 (1991).

    Article  ADS  Google Scholar 

  42. Boaknin, E. et al. Heat conduction in the vortex state of NbSe2: Evidence for multiband superconductivity. Phys. Rev. Lett. 90, 117003 (2005).

    Article  ADS  Google Scholar 

  43. Li, S. Y., Taillefer, L., Wu, G. & Chen, X. H. Single gap s-wave superconductivity in CuxTiSe2. Preprint at <http://www.arxiv.org/cond-mat/071669> (2007).

  44. Matsui, H. et al. Direct observation of a nonmonotonic d x 2 − y 2 -wave superconducting gap in the electron-doped high-Tc superconductor Pr0.89LaCe0.11CuO4 . Phys. Rev. Lett. 95, 017003 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Motizuki, H. Harima, N. Nagaosa, A.Q.R. Baron, M. Grioni, K. Yonemitsu and H. Matsueda for discussions. We thank K. Takaki and A. Koizumi for assistance in crystal growth. This work was supported by grants from the Ministry of Education, Culture and Science of Japan. T.K. thanks the Japan Society for the Promotion of Science for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Kiss or S. Shin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, T., Yokoya, T., Chainani, A. et al. Charge-order-maximized momentum-dependent superconductivity. Nature Phys 3, 720–725 (2007). https://doi.org/10.1038/nphys699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing