
LETTERS

Flow diagram of the metal–insulator
transition in two dimensions
S. ANISSIMOVA1, S. V. KRAVCHENKO1*, A. PUNNOOSE2, A. M. FINKEL’STEIN3 AND T. M. KLAPWIJK4

1Physics Department, Northeastern University, Boston, Massachusetts 02115, USA
2Physics Department, City College of the City University of New York, New York, New York 10031, USA
3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
4Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands
*e-mail: s.kravchenko@neu.edu

Published online: 5 August 2007; doi:10.1038/nphys685

The discovery of the metal–insulator transition (MIT) in
two-dimensional electron systems1 challenged the veracity of one
of the most influential conjectures2 in the physics of disordered
electrons, which states that ‘in two dimensions, there is no true
metallic behaviour’; no matter how weak the disorder, electrons
would be trapped and unable to conduct a current. However, that
theory did not account for interactions between the electrons.
Here, we investigate the interplay between the electron–electron
interactions and disorder near the MIT using simultaneous
measurements of electrical resistivity and magnetoconductance.
We show that both the resistance and interaction amplitude
exhibit a fan-like spread as the MIT is crossed. From these
data, we construct a resistance–interaction flow diagram of the
MIT that clearly reveals a quantum critical point, as predicted
by the two-parameter scaling theory3. The metallic side of this
diagram is accurately described by the renormalization-group
theory4 without any fitting parameters. In particular, themetallic
temperature dependence of the resistance sets in when the
interaction amplitude reaches γ2 ≈ 0.45—a value in remarkable
agreement with the one predicted by theory4.

The low amount of disorder in high-mobility silicon metal-
oxide–semiconductor field-effect transistors (Si MOSFETs) allows
measurements to be made in the regime of very low electron
densities where correlation effects due to electron–electron
interactions become especially important. (Ratios rs ≡ EC/EF > 10
between Coulomb and Fermi energies are easily reached with Fermi
energies of the order 0.7meV.) This material system has the further
advantage that its electron spectrum has two almost degenerate
valleys, which further enhances the correlation effects. Indeed, the
low-temperature drop of the resistance on the metallic side of the
transition (Fig. 1a) in Si MOSFETs is the most pronounced among
all two-dimensional (2D) electron systems5,6.

At low temperatures kBT < h̄/τ < EF, electrons propagate
diffusively. Here, kB is Boltzmann’s constant, T is temperature
and τ is the electron mean free time. This region, referred to as
the diffusive regime, extends up to a few kelvin near the metal–
insulator transition (MIT). As a result, the low-temperature physics
of the disordered electron liquid, combined with the large rs values
near the MIT, is determined by the properties of interacting,
diffusing electrons7–9.

With this in mind, and with the view of studying
the role of disorder and effective strengths of the electron
interactions in the vicinity of the MIT, we have carried
out simultaneous measurements of the resistivity, ρ, and

in-plane magnetoconductance, σ(B). As the origin of the
magnetoconductance lies in the interaction corrections to the
conductance involving different spin projections (Hartree-like),
the corresponding interaction strength can be determined from
the slope of σ(B). When a magnetic field, B, is applied parallel to
the 2D plane in the diffusive regime10,11, the magnetoconductance
1σ(B,T) ≡ σ(B,T)−σ(0,T) is proportional to b2 in the weak-
field limit b≡ gµBB/kBT �1, where µB is the Bohr magneton. On
the other hand, at higher temperatures h̄/τ < kBT < EF, referred
to as the ballistic regime, 1σ(B,T) is expected to be proportional
to Tb2 (ref. 12). Because the magnetoconductivities in these two
regions are so different, measuring 1σ(B,T) provides a reliable
way to identify the diffusive region.

The samples we used had peak electron mobilities of about
3× 104 cm2 V−1 s−1 at 0.2 K. The resistivity, ρ, was measured by a
standard low-frequency lock-in technique. The magnetoresistance
traces, ρ(B), for a representative density in the diffusive
region ns = 9.14× 1010 cm−2, are plotted in Fig. 2a for different
temperatures; ρ(T) at B= 0 for this density is the third curve from
the bottom in Fig. 1a. The corresponding magnetoconductivities,
1σ = 1/ρ(B) − 1/ρ(0), are plotted as function of b2 in Fig. 2b.
When plotted this way, it can be seen that the σ(b2) curves are
linear. It can also be seen that the slopes decrease slowly with
temperature. This is important, because had the electrons been in
the ballistic regime, the slopes would have instead increased with
temperature by an order of magnitude in the temperature interval
used owing to the expected Tb2 dependence. By applying the same
procedure to different electron densities, we find that the diffusive
region extends to approximately 25% in electron densities above the
critical density of the MIT. (The critical density nc ≈ 8×1010 cm−2

in this sample.)
The explicit form of the slope of 1σ(b2) for the single-valley

case was derived in refs 10,11. It is straightforward to accommodate
the valley degrees of freedom. For the case of nv degenerate valleys
(nv = 2 for silicon), we obtain for 1σ(b2), in the limit b � 1,
the expression

1σ(b2) = −0.091
e2

πh
n2
vγ2 (γ2 +1)b2. (1)

(We note that the constant 0.091 in equation (1) provides a more
accurate coefficient compared with the value 0.084 given in ref. 10.)
Here, γ2 is the effective electron–electron interaction amplitude in
the spin-density channel. (In standard Fermi-liquid notation, γ2 is
related to the parameter Fa

0 as γ2 =−Fa
0 /(1+Fa

0 ).) As was observed
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Figure 1 Temperature dependencies of the resistivity and of the strength of
spin-related interactions for electron densities across the MIT. a, ρ (T ) traces at
B= 0. b, Cee (T ), extracted from the slope of the magnetoconductance (see text).
Both ρ (T ) and Cee (T ) exhibit a fan-like structure across the MIT. The densities (in
units of 1010 cm−2) are: 7.24, 7.53, 7.83, 8.26, 8.70, 9.14, 9.58 and 9.87. In a, the
densities increase from top to bottom, whereas in b, they increase from bottom to
top, that is, the interaction increases in the metallic phase and decreases in the
insulating phase as the temperature is lowered. M and I regions indicate metallic
and insulating phases, respectively.
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Figure 2 Magnetoresistivity and magnetoconductivity for electron density
ns = 9.14×1010 cm−2 measured at different temperatures. a, Resistivity plotted
against magnetic field applied parallel to the 2D plane. b, Magnetoconductivity
1σ (B, T )≡ σ (B, T )−σ (0, T ) (in units of the quantum conductance) plotted as a
function of (gµBB/kBT )2. The curves in b are vertically shifted for clarity. Note that
the curves for different temperatures are linear when plotted versus (gµBB/kBT )2

and their slopes slowly decrease with temperature.

earlier in ref. 4, the large factor n2
v due to the valleys enhances

the effect of the e–e interactions. (Here, we have assumed that
the valleys are fully degenerate at all temperatures by restricting
ourselves to T > Tv, where Tv is the temperature scale associated
with the valley splitting. This temperature is not precisely known,
but our analysis of the low-temperature data suggests Tv ≈ 0.5K.
Further details of this region will be presented elsewhere.)

Equation (1), as was shown in ref. 11, incorporates
renormalization-group corrections to first order in ρ and is
therefore strictly valid only deep in the metallic region. For
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Figure 3 The disorder–interaction (ρ–C ee ) flow diagram of the 2D electron
liquid in Si MOSFETs. The red circle at ρ ≈ 0.8 and Cee ≈ 0.035 indicates the
location of the QCP from which the three separatrices (black lines) emanate. The
arrows indicate the direction of the flow as the temperature is lowered. The electron
densities are indicated in units of 1010 cm−2.

general ρ, the magnetoconductance in the diffusive regime will still
retain the b2 form, 1σ =−(e2/πh)Cee(γ2,ρ)n2

vb
2. The coefficient

Cee reflects the strength of spin-related interactions at any value
of the resistance (as long as gµBB < kBT < h/τ). This is because
the in-plane magnetoconductance is a consequence of the splitting
of the spin sub-bands. The fluctuations in spin density lead to
finite temperature corrections to the resistivity via the electron–
electron interaction amplitude in the spin-density channel, γ2.
Thus, the spin splitting, by reducing these fluctuations, leads to a
finite magnetoconductance through γ2.

The temperature dependences of the parameter Cee, extracted
by fitting the σ(b2) traces in Fig. 2b, are shown in Fig. 1b for
various densities across the MIT. To the best of our knowledge,
this is the first observation of the temperature dependence of
the strength of the electron–electron interactions. In Fig. 1a, we
plot ρ(T) at zero magnetic field for the same densities. (In the
following, ρ is always expressed in units of πh/e2 (ref. 3).) Figure 1
reveals that not only ρ but also the interaction strength exhibits
a fan-like spread as the MIT is crossed. We see that, whereas
the interaction grows in the metallic phase as the temperature is
reduced, it is suppressed in the insulating phase. The magnitudes
of these changes depend on how far the system is from the MIT,
with both ρ and γ2 becoming practically temperature independent
for densities close to the MIT. This behaviour is indicative
of the flow around a quantum critical point (QCP), which is
fully consistent with the theoretical prediction that the evolution
of ρ and the interaction amplitude, γ2, with temperature are
described by a two-parameter system of coupled renormalization-
group equations manifesting an unstable fixed point corresponding
to the QCP3. Note that a phase diagram can be presented in
different coordinates obtained as a result of various (rather broad)
transformations, preserving the topology of the phase diagram.
In our case, the transformation involves using the slope of
the magnetoconductance.

To see this in a different way, we combine Fig. 1a and
b and construct a two-parameter ‘flow’ diagram in the
disorder–interaction (ρ–Cee) space. The flow diagram is shown
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Figure 4 Comparison between theory (lines) and experiment (symbols). a, ρ/ρmax as a function of ρmax ln(T/Tmax ). b, γ2 as a function of ρmax ln(T/Tmax ). The vertical
dashed lines correspond to T= Tmax, the temperature at which ρ (T ) reaches the maximum. Note that at this temperature, the interaction amplitude γ2 ≈ 0.45 (indicated by
the horizontal dashed line in b), in excellent agreement with theory. The symbols are the same as in Figs 1 and 3 and correspond to ns = 9.87, 9.58 and 9.14×1010 cm−2.

in Fig. 3. It can be seen that such a flow diagram constructed out
of ρ and the parameter Cee (which is sensitive to the amplitude
γ2) clearly indicates the existence of a QCP from which three
separatrices, one attractive and two repulsive, can be drawn.

On the metallic side of the flow diagram, a separatrix that
forms the envelope of a family of non-monotonic curves can
be clearly seen in Fig. 3 flowing towards the region with ρ � 1.
The theoretical details of the evolution of ρ and the γ2 in this
region with ρ � 1 were discussed in detail in ref. 4 in terms of a
renormalization-group theory. We recall the salient features of the
theory here. The theory predicts that: (1) the amplitude γ2 increases
monotonically as the temperature is reduced; (2) the resistance, on
the other hand, has a characteristic non-monotonic form changing
from insulating behaviour (dρ/dT < 0) at high temperatures
to metallic behaviour (dρ/dT > 0) at low temperatures, with
the maximum value, ρmax, occurring at a crossover temperature
T = Tmax; (3) the value of the amplitude γ2 at T = Tmax is universal
in the limit ρmax � 1, depending only on nv; for nv = 1, it is 2.08,
whereas for nv = 2, it has the much lower value 0.45; (4) although
the values of ρmax and Tmax are not universal and depend on the
system, the behaviours of ρ(T)/ρmax and γ2(T) are universal when
plotted as functions of ρmax ln(T/Tmax).

The results of comparison between experiment and theory are
shown in Fig. 4a,b, for the three largest densities in the diffusive
regime with ρmax ∼

< 0.4 (πh/e2). At these densities, the resistance is
small enough, and we can safely extract the interaction amplitudes
γ2 from 1σ(b2) using equation (1), that is, Cee = 0.091γ2(1+γ2).
(As the density increases, the maximum in ρ(T) becomes less
pronounced, and the non-monotonicity eventually disappears at
ns ∼

> 1×1011 cm−2, as the ballistic region is approached.) The solid
lines are the universal theoretical curves for ρ(T)/ρmax and γ2(T)
plotted as a function of ρmax ln(T/Tmax). It can be seen from Fig. 4
that at T = Tmax, the value of the interaction amplitude γ2 ≈ 0.45,
which is in remarkable agreement with theory for nv = 2. The
agreement between theory and experiment is especially striking
given that the theory has no adjustable parameters. Systematic
deviations from the universal curve occur at lower densities as
higher-order corrections in ρ become important.

The data for γ2 allow us to calculate the renormalized
Landé g-factor g∗

= 2(1+ γ2). For our highest density sample,
it grows from g∗

≈ 2.9 at the highest temperature to g∗
≈ 4

at the lowest. This is the first time the g-factor has been
measured in the diffusive regime and is seen to increase with
decreasing temperature. Earlier experiments were done in the
ballistic regime, where the g-factor was found to be g∗

≈ 2.8 and
temperature independent13.

Finally, we would like to note that the 2D electron system in
silicon, used in this study, has a short-range disorder potential and
constitutes a multi-valley system: features assumed in the theory.
In other material systems, including GaAs/AlGaAs heterostructures
and SiGe heterostructures, the disorder potential is long range,
which leads to very high mobilities. The diffusive regime in these
systems is therefore hard to reach at reasonable temperatures. In
addition, high mobilities also imply very low carrier densities,
which leads to a plethora of finite temperature corrections arising
from non-degeneracy effects, large-rs screening effects and so on.
Therefore, the transition observed so far in these systems (see,
for example, refs 14,15) might be a ‘high’-temperature crossover
phenomenon. Ultimately, however, at low enough temperatures the
diffusive regime will unavoidably be reached. It remains to be seen
whether or not the low-temperature behaviour in other 2D systems
is quantitatively described by the two-parameter scaling theory.

Received 16 December 2006; accepted 6 July 2007; published 5 August 2007.

References
1. Kravchenko, S. V. et al. Possible metal–insulator transition at B= 0 in 2 dimensions. Phys. Rev. B 50,

8039–8042 (1994).
2. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of

localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).
3. Punnoose, A. & Finkel’stein, A. M. Metal–insulator transition in disordered two-dimensional electron

systems. Science 310, 289–291 (2005).
4. Punnoose, A. & Finkel’stein, A. M. Dilute electron gas near the metal–insulator transition: Role of

valleys in silicon inversion layers. Phys. Rev. Lett. 88, 016802 (2002).
5. Kravchenko, S. V. & Sarachik, M. P. Metal–insulator transition in two-dimensional electron systems.

Rep. Prog. Phys. 67, 1–44 (2004).
6. Shashkin, A. A. Metal–insulator transitions and the effects of electron–electron interactions in

two-dimensional electron systems. Phys.-Usp. 48, 129–149 (2005).
7. Finkel’stein, A. M. Influence of Coulomb interaction on the properties of disordered metals. Sov.

Phys.—JETP 57, 97–108 (1983).
8. Castellani, C., Di Castro, C., Lee, P. A. & Ma, M. Interaction-driven metal–insulator transitions in

disordered fermion systems. Phys. Rev. B 30, 527–543 (1984).
9. Finkel’stein, A. M. in Electron Liquid in Disordered Conductors (ed. Khalatnikov, I. M.) (Soviet

Scientific Reviews, Vol. 14, Harwood Academic Publishers, London, 1990).
10. Lee, P. A. & Ramakrishnan, T. V. Magnetoresistance of weakly disordered electrons. Phys. Rev. B 26,

4009–4012 (1982).
11. Castellani, C., Di Castro, C. & Lee, P. A. Metallic phase and metal–insulator transition in

two-dimensional electronic systems. Phys. Rev. B 57, 9381–9384 (1998).

nature physics VOL 3 OCTOBER 2007 www.nature.com/naturephysics 709

© 2007 Nature Publishing Group 



LETTERS

12. Zala, G., Narozhny, B. N. & Aleiner, I. L. Interaction corrections at intermediate temperatures:
Magnetoresistance in a parallel field. Phys. Rev. B 65, 020201 (2002).

13. Anissimova, S. et al. Magnetization of a strongly interacting two-dimensional electron system in
perpendicular magnetic fields. Phys. Rev. Lett. 96, 046409 (2006).

14. Huang, J., Novikov, D. S., Tsui, D. C., Pfeiffer, L. N. & West, K. W. Non-activated transport of strongly
interacting two-dimensional holes in GaAs. Phys. Rev. B 74, 201302(R) (2006).

15. Lai, K. et al. Linear temperature dependence of conductivity in Si two-dimensional electrons near the
apparent metal-to-insulator transition. Phys. Rev. B 75, 033314 (2007).

Acknowledgements
We acknowledge useful discussions with E. Abrahams, C. Castellani, C. Di Castro and M. P. Sarachik.
The work at Northeastern University was supported by the NSF grant DMR-0403026. A.P. was

supported in part by the PSC-CUNY grant no. 60062-3738. A.M.F. is supported by the
Minerva Foundation.
Correspondence and requests for materials should be addressed to S.V.K.

Author contributions
The experiments were carried out by S.A. and S.V.K.; A.P. and A.M.F. were responsible for the
theoretical analysis and T.M.K. provided the samples. All authors contributed to writing
the manuscript.

Competing financial interests
The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

710 nature physics VOL 3 OCTOBER 2007 www.nature.com/naturephysics

© 2007 Nature Publishing Group 

http://npg.nature.com/reprintsandpermissions/

	Flow diagram of the metal–insulator transition in two dimensions
	Main
	Acknowledgements
	References


