Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of cell orientation

Abstract

Many physiological processes depend on the response of biological cells to mechanical forces generated by the contractile activity of the cell or by external stresses. Using a simple theoretical model that includes the forces due to both the mechanosensitivity of cells and the elasticity of the matrix, we predict the dynamics and orientation of cells in both the absence and presence of applied stresses. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the cellular forces in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An illustration of the instantaneous position of a needle-like cell oriented along the z axis.
Figure 2: Time evolution of the strength of the force dipole in the presence of applied static stress.
Figure 3: Time evolution of cellular dipole orientation in the presence of external cyclic stress.

Similar content being viewed by others

References

  1. Discher, D. E., Janmey, P. & Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  ADS  Google Scholar 

  2. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  Google Scholar 

  3. Jakab, K., Neagu, A., Mironov, V., Markwald, R. R. & Forgacs, G. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl Acad. Sci. 101, 2864–2869 (2004).

    Article  ADS  Google Scholar 

  4. Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. Nature Cell Biol. 1, E131–E138 (1999).

    Article  Google Scholar 

  5. Korff, T. & Augustin, H. G. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112, 3249–3258 (1999).

    Google Scholar 

  6. Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    Article  Google Scholar 

  7. Brown, R. A., Prajapati, R., McGrouther, D. A., Yannas, I. V. & Eastwood, M. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three dimensional substrate. J. Cell. Physiol. 175, 323–332 (1998).

    Article  Google Scholar 

  8. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y.-L. Cell Movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  Google Scholar 

  9. Yoshigi, M., Hoffman, L. M., Jensen, C. C., Yost, H. J. & Beckerle, M. C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005).

    Article  Google Scholar 

  10. Shirinsky, V. P. et al. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109, 331–339 (1989).

    Article  Google Scholar 

  11. Hayakaya, K., Sato, N. & Obinata, T. Dynamic reorientation of cultures cells and stress fibers under mechanical stress from periodic stretching. Exp. Cell Res. 268, 104–114 (2001).

    Article  Google Scholar 

  12. Eastwood, M., Mudera, V. C., McGrouther, D. A. & Brown, R. A. Effect of precise mechanical loading on fibroblast populated collagen lattices: Morphological changes. Cell Motil. Cytoskeleton 39, 13–21 (1998).

    Article  Google Scholar 

  13. Collinsworth, A. M. et al. Orientation and length of mammalian skeleton myocytes in response to a unidirectional stretch. Cell Tissue Res. 302, 243–251 (2000).

    Article  Google Scholar 

  14. Takemasa, T., Sugimoto, K. & Yashita, K. Amplitude-dependent stress fiber reorientation in early response to cyclic strain. Exp. Cell Res. 230, 407–410 (1997).

    Article  Google Scholar 

  15. Smith, P. G., Garcia, R. & Kogerman, L. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells. Exp. Cell Res. 232, 127–136 (1997).

    Article  Google Scholar 

  16. Wang, J. H.-C. & Grood, E. S. The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect. Tissue Res. 41, 29–36 (2000).

    Article  Google Scholar 

  17. Wang, J. H.-C., Goldschmidt, C. P., Wille, J. & Yin, F. C.-P. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34, 1563–1572 (2001).

    Article  Google Scholar 

  18. Neidlinger-Wilke, C., Grood, E., Claes, L. & Brand, R. Fibroblast orientation to stretch begins within three hours. J. Orthopaedic Res. 20, 953–956 (2002).

    Article  Google Scholar 

  19. Cha, J. M., Park, S.-N., Noh, S. H. & Suh, H. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain. Artif. Organs 30, 250–258 (2006).

    Article  Google Scholar 

  20. Kurpunski, K. et al. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Natl Acad. Sci. 103, 16095–16100 (2006).

    Article  ADS  Google Scholar 

  21. Schwarz, U. S. & Safran, S. A. Elastic interactions of cells. Phys. Rev. Lett. 88, 48102–48105 (2002).

    Article  ADS  Google Scholar 

  22. Bischofs, I. B., Safran, S. A. & Schwarz, U. S. Elastic interactions of active cells with soft materials. Phys. Rev. E 69, 21911–21927 (2004).

    Article  ADS  Google Scholar 

  23. Dembo, M. & Wang, Y.-L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  ADS  Google Scholar 

  24. Oliver, T., Dembo, M. & Jacobson, K. Separation of propulsive and adhesive stresses in locomoting keratocytes. J. Cell Biol. 145, 589–604 (1999).

    Article  Google Scholar 

  25. Balaban, N. Q. et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    Article  Google Scholar 

  26. Zemel, A., Bischofs, I. B. & Safran, S. A. Active elasticity of gels with contractile cells. Phys. Rev. Lett. 97, 128103–128106 (2006).

    Article  ADS  Google Scholar 

  27. Saez, A., Buguin, A., Silberzan, P. & Ladoux, B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89, L52–L54 (2005).

    Article  Google Scholar 

  28. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon, Oxford, 1986).

    MATH  Google Scholar 

  29. Safran, S. A., Gov, N., Nicolas, A., Schwarz, U. S. & Tlusty, T. Physics of cell elasticity, shape and adhesion. Physica A 352, 171–201 (2005).

    Article  ADS  Google Scholar 

  30. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  31. Nicolas, A. & Safran, S. A. Limitation of cell adhesion by the elasticity of the ECM. Biophys. J. 91, 61–73 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for discussions with A. Buguin, M. E. Fisher, N. Gov, S. Jungbauer, R. Kemkemer, B. Ladoux, A. Nicolas, J. Prost, U. Schwarz and P. Silberzan and for support from the Israel Science Foundation and an EU Network Grant. This research was made possible in part by the historic generosity of the Harold Perlman Family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Safran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, R., Zemel, A. & Safran, S. Dynamics of cell orientation. Nature Phys 3, 655–659 (2007). https://doi.org/10.1038/nphys680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing