Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-body interactions with cold polar molecules

Abstract

Fundamental interactions between particles, such as the Coulomb law, involve pairs of particles, and our understanding of the plethora of phenomena in condensed-matter physics rests on models involving effective two-body interactions. On the other hand, exotic quantum phases, such as topological phases or spin liquids, are often identified as ground states of hamiltonians with three- or more-body terms. Although the study of these phases and the properties of their excitations is currently one of the most exciting developments in theoretical condensed-matter physics, it is difficult to identify real physical systems exhibiting such properties. Here, we show that polar molecules in optical lattices driven by microwave fields naturally give rise to Hubbard models with strong nearest-neighbour three-body interactions, whereas the two-body terms can be tuned with external fields. This may open a new route for an experimental study of exotic quantum phases with quantum degenerate molecular gases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-body interaction terms.
Figure 2: Spectrum of a polar molecule.
Figure 3: Parameters of the effective interaction potential.
Figure 4: Phase diagram.

Similar content being viewed by others

References

  1. Murphy, R. D. & Barker, J. A. Three-body interactions in liquid and solid helium. Phys. Rev. A 3, 1037–1040 (1971).

    Article  ADS  Google Scholar 

  2. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  3. Fradkin, E., Nayak, C., Tsvelik, A. & Wilczek, F. A Chern-Simons effective field theory for the Pfaffian quantum Hall state. Nucl. Phys. B 516, 704–718 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  4. Cooper, N. R. Exact ground states of rotating Bose gases close to a Feshbach resonance. Phys. Rev. Lett. 92, 220405 (2004).

    Article  ADS  Google Scholar 

  5. Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001).

    Article  ADS  Google Scholar 

  6. Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis kagome antiferromagnet. Phys. Rev. B 65, 224412 (2002).

    Article  ADS  Google Scholar 

  7. Motrunich, O. I. & Senthil, T. Exotic order in simple models of bosonic systems. Phys. Rev. Lett. 89, 277004 (2002).

    Article  ADS  Google Scholar 

  8. Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: The U(1) spin liquid in a S=1/2 three dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).

    Article  ADS  Google Scholar 

  9. Levin, M. A. & Wen, X. G. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

    Article  ADS  Google Scholar 

  10. Fidkowski, L., Freedman, M., Nayak, C., Walker, K. & Wang, Z. From string nets to nonabelions. Preprint at <http://www.arxiv.org/cond-mat/0610583> (2006).

  11. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    Article  ADS  Google Scholar 

  12. Ronen, S., Bortolotti, D. C. E., Blume, D. & Bohn, J. L. Dipolar Bose–Einstein condensates with dipole-dependent scattering length. Phys. Rev. A 74, 033611 (2006).

    Article  ADS  Google Scholar 

  13. Kotochigova, S. & Tiesinga, E. Controlling polar molecules in optical lattices. Phys. Rev. A 73, 041405(R) (2006).

    Article  ADS  Google Scholar 

  14. Baranov, M. A., Osterloh, K. & Lewenstein, M. Fractional quantum Hall states in ultracold rapidly rotating dipolar Fermi gases. Phys. Rev. Lett. 94, 070404 (2005).

    Article  ADS  Google Scholar 

  15. Wang, D.-W., Lukin, M. D. & Demler, E. Quantum fluids of self-assembled chains of polar molecules. Phys. Rev. Lett. 97, 180413 (2006).

    Article  ADS  Google Scholar 

  16. Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003).

    Article  ADS  Google Scholar 

  17. Doyle, J., Friedrich, B., Krems, R. V. & Masnou-Seeuws, F. Quo vadis, cold molecules? Eur. Phys. J. D 31, 149–164 (2004).

    Article  ADS  Google Scholar 

  18. Sage, J. M., Sainis, S., Bergeman, T. & DeMille, D. Optical production of ultracold polar molecules. Phys. Rev. Lett. 94, 203001 (2005).

    Article  ADS  Google Scholar 

  19. Rieger, T., Junglen, T., Rangwala, S. A., Pinkse, P. W. H. & Rempe, G. Continuous loading of an electrostatic trap for polar molecules. Phys. Rev. Lett. 95, 173002 (2005).

    Article  ADS  Google Scholar 

  20. Wang, D. et al. Photoassociative production and trapping of ultracold KRb molecules. Phys. Rev. Lett. 93, 243005 (2005).

    Article  ADS  Google Scholar 

  21. Mancini, M. W., Telles, G. D., Caires, A. R. L., Bagnato, V. S. & Marcassa, L. G. Observation of ultracold ground-state heteronuclear molecules. Phys. Rev. Lett. 92, 133203 (2004).

    Article  ADS  Google Scholar 

  22. van de Meerakker, S. Y. T., Smeets, P. H. M., Vanhaecke, N., Jongma, R. T. & Meijer, G. Deceleration and electrostatic trapping of OH radicals. Phys. Rev. Lett. 94, 23004 (2005).

    Article  ADS  Google Scholar 

  23. Kraft, S. D. et al. Formation of ultracold LiCs molecules. J. Phys. B 39, S993–S1000 (2006).

    Article  Google Scholar 

  24. Sawyer, B. C. et al. Magneto-electrostatic trapping of ground state OH molecules. Preprint at <http://www.arxiv.org/physics/0702146> (2007).

  25. Tewari, S., Scarola, V. W., Senthil, T. & Sarma, S. D. Emergence of artificial photons in an optical lattice. Phys. Rev. Lett. 97, 200401 (2006).

    Article  ADS  Google Scholar 

  26. Micheli, A., Pupillo, G., Büchler, H. P. & Zoller, P. Cold polar molecules in 2d traps: Tailoring interactions with external fields for novel quantum phases. Preprint at <http://www.arxiv.org/quant-ph/0703031> (2007).

  27. Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: Controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    Article  ADS  Google Scholar 

  28. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  29. Gogolin, A. O., Nersesyan, A. A. & Tsvelik, A. M. Bosonization and Strongly Correlated Systems (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  30. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  31. Haldane, F. D. M. Effective harmonic-fluid approach to low energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Lukin and A. Gorshkov for discussions. This work was supported by the Austrian Science Foundation (FWF), the European Union projects OLAQUI (FP6-013501-OLAQUI), CONQUEST (MRTN-CT-2003-505089), the SCALA network (IST- 15714), the Institute for Quantum Information, and in part by the National Science Foundation under Grant No. PHY05-51164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Büchler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büchler, H., Micheli, A. & Zoller, P. Three-body interactions with cold polar molecules. Nature Phys 3, 726–731 (2007). https://doi.org/10.1038/nphys678

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys678

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing