Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurement of Rashba and Dresselhaus spin–orbit magnetic fields

A Corrigendum to this article was published on 01 January 2008

Abstract

Spin–orbit coupling is a manifestation of special relativity. In the reference frame of a moving electron, electric fields transform into magnetic fields, which interact with the electron spin and lift the degeneracy of spin-up and spin-down states. In solid-state systems, the resulting spin–orbit fields are referred to as Dresselhaus and Rashba fields, depending on whether the electric fields originate from bulk or structure inversion asymmetry, respectively. Yet, it remains a challenge to determine the absolute value of both contributions in a single sample. Here, we show that both fields can be measured by optically monitoring the angular dependence of the electrons’ spin precession on their direction of motion with respect to the crystal lattice. Furthermore, we demonstrate spin resonance induced by the spin–orbit fields. We apply our method to GaAs/InGaAs quantum-well electrons, but it should be universally useful to characterize spin–orbit interactions in semiconductors, and therefore could facilitate the design of spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orientation of the magnetic and electric fields and measurement set-up.
Figure 2: TRFR signal measured at different times and electric-field angles at θ=45.
Figure 3: Spin–orbit fields as a function of ϕ for θ=0, 90 and 45.
Figure 4: Spin resonance induced by an oscillating spin–orbit field.

Similar content being viewed by others

References

  1. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  ADS  Google Scholar 

  2. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    Article  ADS  Google Scholar 

  3. Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer Tracts in Modern Physics, Vol. 191/2003, Springer, Berlin, 2003).

    Book  Google Scholar 

  4. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  ADS  Google Scholar 

  5. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).

    Article  ADS  Google Scholar 

  6. D’Yakonov, M. I. & Perel’, V. I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1971).

    Google Scholar 

  7. Lommer, G., Malcher, F. & Rossler, U. Spin splitting in semiconductor heterostructures for B→0. Phys. Rev. Lett. 60, 728–731 (1988).

    Article  ADS  Google Scholar 

  8. Luo, J., Munekata, H., Fang, F. F. & Stiles, P. J. Effects of inversion asymmetry on electron energy band structures in GaSb/InAs/GaSb quantum wells. Phys. Rev. B 41, 7685–7693 (1990).

    Article  ADS  Google Scholar 

  9. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  ADS  Google Scholar 

  10. Schapers, T. et al. Effect of the heterointerface on the spin splitting in modulation doped InxGa1−xAs/InP quantum wells for B→0. J. Appl. Phys. 83, 4324–4333 (1998).

    Article  ADS  Google Scholar 

  11. Das, B. et al. Evidence for spin splitting in InxGa1−xAs/In0.52Al0.48As heterostructures as B→0. Phys. Rev. B 39, 1411–1414 (1989).

    Article  ADS  Google Scholar 

  12. Engels, G., Lange, J., Schäpers, T. & Lüth, H. Experimental and theoretical approach to spin splitting in modulation-doped InxGa1−xAs/InP quantum wells for B→0. Phys. Rev. B 55, R1958–R1961 (1997).

    Article  ADS  Google Scholar 

  13. Hu, C.-M. et al. Zero-field spin splitting in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure: Band nonparabolicity influence and the subband dependence. Phys. Rev. B 60, 7736–7739 (1999).

    Article  ADS  Google Scholar 

  14. Pfeffer, P. & Zawadzki, W. Spin splitting of conduction subbands in III–V heterostructures due to inversion asymmetry. Phys. Rev. B 59, R5312–R5315 (1999).

    Article  ADS  Google Scholar 

  15. Brosig, S. et al. Zero-field spin splitting in InAs-AlSb quantum wells revisited. Phys. Rev. B 60, R13989–R13992 (1999).

    Article  ADS  Google Scholar 

  16. Koga, T., Nitta, J., Akazaki, T. & Takayanagi, H. Rashba spin–orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys. Rev. Lett. 89, 046801 (2002).

    Article  ADS  Google Scholar 

  17. Ganichev, S. D. et al. Experimental separation of Rashba and Dresselhaus spin splittings in semiconductor quantum wells. Phys. Rev. Lett. 92, 256601 (2004).

    Article  ADS  Google Scholar 

  18. Miller, J. B. et al. Gate-controlled spin–orbit quantum interference effects in lateral transport. Phys. Rev. Lett. 90, 076807 (2003).

    Article  ADS  Google Scholar 

  19. Grundler, D. Large Rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers. Phys. Rev. Lett. 84, 6074–6077 (2000).

    Article  ADS  Google Scholar 

  20. Heida, J. P., van Wees, B. J., Kuipers, J. J., Klapwijk, T. M. & Borghs, G. Spin–orbit interaction in a two-dimensional electron gas in a InAs/AlSb quantum well with gate-controlled electron density. Phys. Rev. B 57, 11911–11914 (1998).

    Article  ADS  Google Scholar 

  21. Matsuyama, T., Kürsten, R., Meißner, C. & Merkt, U. Rashba spin splitting in inversion layers on p-type bulk InAs. Phys. Rev. B 61, 15588–15591 (2000).

    Article  ADS  Google Scholar 

  22. Kalevich, V. & Korenev, V. Effect of electric field on the optical orientation of 2D electrons. JETP Lett. 52, 230–235 (1990).

    ADS  Google Scholar 

  23. Kato, Y., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004).

    Article  ADS  Google Scholar 

  24. Crooker, S. A. & Smith, D. L. Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields. Phys. Rev. Lett. 94, 236601 (2005).

    Article  ADS  Google Scholar 

  25. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    Article  ADS  Google Scholar 

  26. Engel, H.-A., Rashba, E. I. & Halperin, B. I. Out-of-plane spin polarization from in-plane electric and magnetic fields. Phys. Rev. Lett. 98, 036602 (2007).

    Article  ADS  Google Scholar 

  27. Ganichev, S. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935–R983 (2003).

    Article  ADS  Google Scholar 

  28. Duckheim, M. & Loss, D. Electric-dipole-induced spin resonance in disordered semiconductors. Nature Phys. 2, 195–199 (2006).

    Article  ADS  Google Scholar 

  29. Bloch, F. & Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940).

    Article  ADS  Google Scholar 

  30. Crooker, S. A., Awschalom, D. D. & Samarth, N. Time-resolved faraday rotation spectroscopy of spin dynamics in digital magnetic heterostructures. IEEE J. Sel. Top. Quantum Electron. 1, 1082–1092 (1995).

    Article  ADS  Google Scholar 

  31. Meier, L., Salis, G., Ellenberger, C., Ensslin, K. & Gini, E. Stray-field-induced modification of coherent spin dynamics. Appl. Phys. Lett. 88, 172501 (2006).

    Article  ADS  Google Scholar 

  32. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge R. Leturcq for help with sample preparation and M. Duckheim, D. Loss, R. Allenspach and T. Ihn for discussions. This work was supported by the Swiss National Science Foundation (NCCR Nanoscale Science).

Author information

Authors and Affiliations

Authors

Contributions

L.M. carried out the experiments and analysed the data in close collaboration with G.S. Samples were fabricated by L.M. and I.S., and grown by E.G. (samples 1 and 2) and S.S. (sample 3). K.E. initiated the collaboration and supported the project in discussions.

Corresponding authors

Correspondence to Lorenz Meier or Gian Salis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, L., Salis, G., Shorubalko, I. et al. Measurement of Rashba and Dresselhaus spin–orbit magnetic fields. Nature Phys 3, 650–654 (2007). https://doi.org/10.1038/nphys675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing