Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pinch points and Kasteleyn transitions in kagome ice

Abstract

Complex disordered states—from liquids and glasses to exotic quantum matter—are ubiquitous in nature. Their key properties include finite entropy, power-law correlations and emergent organizing principles. In spin ice, spin correlations are determined by the ‘ice rules’ organizing principle that stabilizes a magnetic state with the same zero-point entropy as water ice. The entropy can be manipulated with great precision by an applied magnetic field: when directed along the three-fold crystallographic axis, the field produces a state of finite entropy, known as kagome ice. Here, we investigate the spin-ice material Ho2Ti2O7 by tilting the magnetic field slightly away from that axis. We thus realize a classic statistical system named after Kasteleyn, in which the entropy of a critical phase can be continuously tuned. Our neutron scattering experiments reveal how this process occurs at a microscopic level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin ice and kagome ice.
Figure 2: Measured and simulated diffuse scattering in Ho2Ti2O7.
Figure 3: Pinch-point scattering in kagome ice.
Figure 4: Kasteleyn physics.
Figure 5: Critical-point termination of kagome-ice plateau.

Similar content being viewed by others

References

  1. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometric frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  ADS  Google Scholar 

  2. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).

    Article  ADS  Google Scholar 

  3. Snyder, J., Slusky, J. S., Cava, R. J. & Schiffer, P. How ‘spin ice’ freezes. Nature 413, 48–51 (2001).

    Article  ADS  Google Scholar 

  4. Matsuhira, K., Hiroi, Z., Tayama, T., Takagi, S. & Sakakibara, T. A new macroscopically degenerate ground state in the spin ice compound Dy2Ti2O7 . J. Phys. Condens. Matter 14, L559–L565 (2002).

    Article  ADS  Google Scholar 

  5. Sakakibara, T., Tayama, T., Hiroi, Z., Matsuhira, K. & Takagi, S. Observation of a liquid-gas-type transition in the pyrochlore spin ice compound Dy2Ti2O7 in a magnetic field. Phys. Rev. Lett. 90, 207205 (2003).

    Article  ADS  Google Scholar 

  6. Higashinaka, R. & Maeno, Y. Field-induced transition of a triangular plane in the spin-ice compound Dy2Ti2O7 . Phys. Rev. Lett. 95, 237208 (2005).

    Article  ADS  Google Scholar 

  7. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  Google Scholar 

  8. Isakov, S. V., Raman, K. S., Moessner, R. & Sondhi, S. L. Magnetization curve of spin ice in a [111] magnetic field. Phys. Rev. B 70, 104418 (2004).

    Article  ADS  Google Scholar 

  9. Aoki, H., Sakakibara, T., Matsuhira, K. & Hiroi, Z. Magnetocaloric effect study on the pyrochlore spin ice compound Dy2Ti2O7 in a [111] magnetic field. J. Phys. Soc. Japan 73, 2851–2856 (2004).

    Article  ADS  Google Scholar 

  10. Bonner, J. C. & Fisher, M. E. Entropy of an antiferromagnet in a magnetic field. Proc. Phys. Soc. 80, 508–515 (1962).

    Article  ADS  Google Scholar 

  11. Tabata, Y. et al. Kagome ice state in the dipolar spin ice Dy2Ti2O7 . Phys. Rev. Lett. 97, 257205 (2006).

    Article  ADS  Google Scholar 

  12. den Hertog, B. C. & Gingras, M. J. P. Dipolar interactions and origin of spin ice in ising pyrochlore magnets. Phys. Rev. Lett. 84, 3430–3433 (2000).

    Article  ADS  Google Scholar 

  13. Melko, R. G. & Gingras, M. J. P. Monte Carlo studies of the dipolar spin ice model. J. Phys. Condens. Matter 16, R1277–R1319 (2004).

    Article  ADS  Google Scholar 

  14. Isakov, S. V., Gregor, K., Moessner, R. & Sondhi, S. L. Dipolar spin correlations in classical pyrochlore magnets. Phys. Rev. Lett. 93, 167204 (2004).

    Article  ADS  Google Scholar 

  15. Isakov, S. V., Moessner, R. & Sondhi, S. L. Why spin ice obeys the ice rules. Phys. Rev. Lett. 95, 217201 (2005).

    Article  ADS  Google Scholar 

  16. Anderson, P. W. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102, 1008–1013 (1956).

    Article  ADS  Google Scholar 

  17. Henley, C. L. Power-law spin correlations in pyrochlore antiferromagnets. Phys. Rev. B 71, 014424 (2005).

    Article  ADS  Google Scholar 

  18. Youngblood, R. W. & Axe, J. D. Polarization fluctuations in ferroelectric models. Phys. Rev. B 23, 232–238 (1981).

    Article  ADS  Google Scholar 

  19. Skalyo, J., Frazer, B. C. & Shirane, G. Ferroelectric mode motion in KD2PO4 . Phys. Rev. B 1, 278–286 (1970).

    Article  ADS  Google Scholar 

  20. Harris, M. J., Zinkin, M. P., Tun, Z., Wanklyn, B. M. & Swainson, I. P. Magnetic structure of the spin-liquid state in a frustrated pyrochlore. Phys. Rev. Lett. 73, 189–192 (1994).

    Article  ADS  Google Scholar 

  21. Ballou, R., Leliévre-Berna, E. & Fåk, B. Spin fluctuations in (Y0.97Sc0.03)Mn2: A geometrically frustrated, nearly antiferromagnetic, itinerant electron system. Phys. Rev. Lett. 76, 2125–2128 (1996).

    Article  ADS  Google Scholar 

  22. Bramwell, S. T. et al. Spin correlations in Ho2Ti2O7 : A dipolar spin ice. Phys. Rev. Lett. 87, 047205 (2001).

    Article  ADS  Google Scholar 

  23. Fennell, T. et al. Neutron scattering investigation of the spin ice state in Dy2Ti2O7 . Phys. Rev. B 70, 134408 (2004).

    Article  ADS  Google Scholar 

  24. Moessner, R. & Sondhi, S. L. Theory of the [111] magnetization plateau in spin ice. Phys. Rev. B 68, 064411 (2003).

    Article  ADS  Google Scholar 

  25. Kasteleyn, P. W. Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  26. Yokoi, C. S. O., Nagle, J. F. & Salinas, S. R. Dimer pair correlations on the brick lattice. J. Stat. Phys. 44, 729–747 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  27. Collins, M. F. Magnetic Critical Scattering (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  28. Petrenko, O. A., Lees, M. R. & Balakrishnan, G. Magnetization process in the spin-ice compound Ho2Ti2O7 . Phys. Rev. B 68, 012406 (2003).

    Article  ADS  Google Scholar 

  29. Fennell, T. et al. Neutron scattering studies of the spin ices Ho2Ti2O7 and Dy2Ti2O7 in applied magnetic field. Phys. Rev. B 72, 224411 (2005).

    Article  ADS  Google Scholar 

  30. Hiroi, Z., Matsuhira, K. & Ogata, M. Ferromagnetic Ising spin chains emerging from the spin ice under magnetic field. J. Phys. Soc. Japan 72, 3045–3048 (2003).

    Article  ADS  Google Scholar 

  31. Mirebeau, I. et al. Ordered spin ice state and magnetic fluctuations in Tb2Sn2O7 . Phys. Rev. Lett. 94, 246402 (2005).

    Article  ADS  Google Scholar 

  32. Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated antiferromagnet Tb2Ti2O7 . Phys. Rev. Lett. 82, 1012–1015 (1999).

    Article  ADS  Google Scholar 

  33. Lee, S.-H. et al. Emergent excitations in a geometrically frustrated antiferromagnet. Nature 418, 856–858 (2002).

    Article  ADS  Google Scholar 

  34. Lau, G. C. et al. Zero-point entropy in stuffed spin-ice. Nature Phys. 2, 249–253 (2006).

    Article  ADS  Google Scholar 

  35. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article  ADS  Google Scholar 

  36. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  ADS  Google Scholar 

  37. Castro Neto, A. H., Pujol, P. & Fradkin, E. Ice: A strongly correlated proton system. Phys. Rev. B 74, 024302 (2006).

    Article  ADS  Google Scholar 

  38. Limelette, P. et al. Universality and critical behaviour at the Mott transition. Science 302, 89–92 (2003).

    Article  ADS  Google Scholar 

  39. Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006).

    Article  ADS  Google Scholar 

  40. Isakov, S. V., Wessel, S., Melko, R. G., Sengupta, K. & Kim, Y. B. Valence bond solids and their quantum melting in hard core bosons on the kagome lattice. Phys. Rev. Lett. 97, 147202 (2006).

    Article  ADS  Google Scholar 

  41. Wanklyn, B. M. Flux growth of some complex oxide materials. J. Mater. Sci. 7, 813–821 (1972).

    Article  ADS  Google Scholar 

  42. Bramwell, S. T., Field, M. N., Harris, M. J. & Parkin, I. P. Bulk magnetization of the heavy rare earth pyrochlores—a series of model frustrated magnets. J. Phys. Condens. Matter 12, 483–495 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge the sample environment team at ISIS (in particular R. Down and J. Keeping) and the ILL (J.-L. Ragazzoni and O. Losserand) and we would like to thank A. S. Wills, R. Moessner and P. C. W. Holdsworth for valuable discussions. We thank the EPSRC (UK) for financial support; work in London was also supported by a Wolfson Royal Society Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fennell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fennell, T., Bramwell, S., McMorrow, D. et al. Pinch points and Kasteleyn transitions in kagome ice. Nature Phys 3, 566–572 (2007). https://doi.org/10.1038/nphys632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing