Entanglement-based quantum communication over 144 km

Abstract

Quantum entanglement is the main resource to endow the field of quantum information processing with powers that exceed those of classical communication and computation. In view of applications such as quantum cryptography or quantum teleportation, extension of quantum-entanglement-based protocols to global distances is of considerable practical interest. Here we experimentally demonstrate entanglement-based quantum key distribution over 144 km. One photon is measured locally at the Canary Island of La Palma, whereas the other is sent over an optical free-space link to Tenerife, where the Optical Ground Station of the European Space Agency acts as the receiver. This exceeds previous free-space experiments by more than an order of magnitude in distance, and is an essential step towards future satellite-based quantum communication and experimental tests on quantum physics in space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The free-space link between the Canary Islands La Palma and Tenerife in a picture taken from a satellite (clouds are shown here).
Figure 2: Complete characterization of the quantum link.
Figure 3: The closed-loop tracking system on La Palma.
Figure 4: Long-term behaviour of the AOA of the tracking beacon on the tracking CCD.
Figure 5: A time series of CCD images of the spot at the APDs illustrates the fluctuations due to atmospheric turbulence.

References

  1. 1

    Schroedinger, E. Die gegenwaertige Situation in der Quantenmechanik. Die Naturwissenschaften 49, 823–828 (1935).

    ADS  Article  Google Scholar 

  2. 2

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  Article  Google Scholar 

  3. 3

    Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Bennett, C. H. & Brassard, G. Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India 175–179 (IEEE, New York, 1984).

    Google Scholar 

  5. 5

    Jennewein, T. et al. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000).

    ADS  Article  Google Scholar 

  6. 6

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  Article  Google Scholar 

  8. 8

    Riebe, M. et al. Experimental quantum teleportation with atoms. Nature 429, 734–737 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    ADS  Article  Google Scholar 

  10. 10

    Ursin, R. et al. Quantum teleportation link across the Danube. Nature 430, 849 (2004).

    ADS  Article  Google Scholar 

  11. 11

    Deutsch, D. & Ekert, A. Quantum computation. Phys. World 11, 47–52 (1998).

    Article  Google Scholar 

  12. 12

    Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16

    Aspelmeyer, M. et al. Long-distance free-space distribution of entangled photons. Science 301, 621–623 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Resch, K. J. et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202–209 (2005).

    ADS  Article  Google Scholar 

  18. 18

    Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett. 94, 150501 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Tittel, W. et al. Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57, 3229–3232 (1998).

    ADS  Article  Google Scholar 

  20. 20

    Marcikic, I. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004).

    ADS  Article  Google Scholar 

  21. 21

    Takesue, H. et al. Differential phase shift quantum key distribution experiment over 105 km fibre. New J. Phys. 7, 232 (2005).

    ADS  Article  Google Scholar 

  22. 22

    Waks, E., Zeevi, A. & Yamamoto, Y. Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65, 52310 (2002).

    ADS  Article  Google Scholar 

  23. 23

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Article  Google Scholar 

  24. 24

    Nordholt, J. E., Hughes, R. J., Morgan, G. L., Peterson, C. G. & Wipf, C. C. Present and future quantum key distribution. Proc. SPIE 4635, 116–126 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Kaltenbaek, R. et al. Proof-of-concept experiments for quantum physics in space. Proc. SPIE Proc. Quantum Commun. Quantum Imaging 5161, 252–268 (2003).

    ADS  Article  Google Scholar 

  26. 26

    Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS  Article  Google Scholar 

  27. 27

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  Article  Google Scholar 

  28. 28

    Pfennigbauer, M. et al. Satellite-based quantum communication terminal employing state-of-the-art technology. J. Opt. Netw. 4, 549–560 (2005).

    Article  Google Scholar 

  29. 29

    Czichy, R. et al. Design of an optical ground station for in-orbit checkout of free space laser communication payloads. SPIE 2381, 26–37 (1995).

    ADS  Google Scholar 

  30. 30

    Comeron, A. et al. Propagation experiments in the near infrared along a 150-km path and from stars in the Canarian archipelago. Proc. SPIE 4687, 78–90 (2002).

    Article  Google Scholar 

  31. 31

    Lange, R., Smutny, B., Wandernoth, B., Czichy, R. & Giggenbach, D. 142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation. Proc. SPIE 6105, 61050A1–61050A9 (2006).

    Google Scholar 

  32. 32

    Eltermann, L. UV, visible, and IR attenuation for altitudes to 50 km. Environ. Res. Pap. 285, AFCRL–68–0153 (1968).

    Google Scholar 

  33. 33

    Kurtsiefer, C. et al. Quantum cryptography: A step towards global key distribution. Nature 419, 450 (2002).

    ADS  Article  Google Scholar 

  34. 34

    Hughes, R. J., Nordholt, J. E., Derkacs, D. & Peterson, C. G. Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43 (2002).

    ADS  Article  Google Scholar 

  35. 35

    Fried, D. L. Statistics of a geometric representation of a wavefront distortion. J. Opt. Soc. Am. 55, 1427–1435 (1965).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36

    Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    ADS  Article  Google Scholar 

  37. 37

    Bennett, C. H., Brassard, G. & Mermin, N. D. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  38. 38

    Brassard, G. & Salvail, L. EUROCRYPT ’93: Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology 410–423 (Lecture Notes in Computer Science, Vol. 765, Springer, New York, 1994).

    Google Scholar 

  39. 39

    Bennett, C. H., Brassard, G. & Robert, J. M. Privacy amplification by public discussion. SIAM J. Comput. 17, 210–229 (1988).

    MathSciNet  Article  Google Scholar 

  40. 40

    Carter, J. L. & Wegman, M. N. Universal classes of hash functions. J. Comput. Syst. Sci. 19, 143–154 (1979).

    MathSciNet  Article  Google Scholar 

  41. 41

    Wegman, M. N. & Carter, J. L. Proc. 20th Ann. Symp. Found. Comput. Sci. 175–182 (IEEE Computer Society, 1979).

    Google Scholar 

  42. 42

    Luetkenhaus, N. Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000).

    ADS  Article  Google Scholar 

  43. 43

    Weinfurter, H. & Zukowski, M. Four-photon entanglement from down-conversion. Phys. Rev. A 64, 010102(R) (2001).

    ADS  Article  Google Scholar 

  44. 44

    Bell, J. S. Free variables and local causality. Dialectica 39, 103–106 (1985).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank F. Sanchez (Director IAC) and A. Alonso (IAC), T. Augusteijn and the staff of the Nordic Optical Telescope (NOT) and the staff of the Telescopio Nazionale Galileo (TNG) in La Palma for their support at the trial sites. Furthermore, we thank C. Brukner and J. Kofler for helpful discussions. This work was supported by ESA under the General Studies Programme (QIPS study, ESA contract number 18805/04/NL/HE), the Austrian Science Foundation (FWF) under project number SFB1520, the A8-Quantum information Highway project of the Bavarian High-Tech Initiative, the European projects SECOQC and QAP and the ASAP programme of the Austrian Space Agency (FFG). Additional support was provided by the ESA, the Swiss National Science Foundation (SNF) and the DOC program of the Austrian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. Ursin or A. Zeilinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T. et al. Entanglement-based quantum communication over 144 km. Nature Phys 3, 481–486 (2007). https://doi.org/10.1038/nphys629

Download citation

Further reading