Article | Published:

Magnetic vortex oscillator driven by d.c. spin-polarized current

Nature Physics volume 3, pages 498503 (2007) | Download Citation

Subjects

Abstract

Transfer of angular momentum from a spin-polarized current to a ferromagnet provides an efficient means to control the magnetization dynamics of nanomagnets. A peculiar consequence of this spin torque, the ability to induce persistent oscillations in a nanomagnet by applying a d.c. current, has previously been reported only for spatially uniform nanomagnets. Here, we demonstrate that a quintessentially non-uniform magnetic structure, a magnetic vortex, isolated within a nanoscale spin-valve structure, can be excited into persistent microwave-frequency oscillations by a spin-polarized d.c. current. Comparison with micromagnetic simulations leads to identification of the oscillations with a precession of the vortex core. The oscillations, which can be obtained in essentially zero magnetic field, exhibit linewidths that can be narrower than 300 kHz at 1.1 GHz, making these highly compact spin-torque vortex-oscillator devices potential candidates for microwave signal-processing applications, and a powerful new tool for fundamental studies of vortex dynamics in magnetic nanostructures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

  2. 2.

    Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

  3. 3.

    et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

  4. 4.

    et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater. 5, 210–215 (2006).

  5. 5.

    et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

  6. 6.

    , , , & Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

  7. 7.

    , , , & Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

  8. 8.

    , , , & Current-induced magnetization reversal in magnetic nanowires. Europhys. Lett. 45, 626–632 (1999).

  9. 9.

    Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999).

  10. 10.

    et al. Current-induced magnetization reversal in high magnetic fields in Co/Cu/Co nanopillars. Phys. Rev. Lett. 91, 067203 (2003).

  11. 11.

    , , , & Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).

  12. 12.

    et al. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).

  13. 13.

    et al. Time-resolved imaging of spin transfer switching: Beyond the macrospin concept. Phys. Rev. Lett. 96, 217202 (2006).

  14. 14.

    , , , & Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

  15. 15.

    et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).

  16. 16.

    et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037–8039 (2002).

  17. 17.

    , , , & Imaging of spin dynamics in closure domain and vortex structures. Phys. Rev. B 67, 020403(R) (2003).

  18. 18.

    et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

  19. 19.

    et al. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005).

  20. 20.

    et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

  21. 21.

    et al. Electrical switching of a vortex core in a magnetic disk. Nature Mater. 6, 269–273 (2007).

  22. 22.

    , , , & Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 97, 107204 (2006).

  23. 23.

    et al. Thickness dependent magnetization states of Fe islands on W(110): From single domain to vortex and diamond patterns. Appl. Phys. Lett. 84, 948–950 (2004).

  24. 24.

    , , , & Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042–1045 (1999).

  25. 25.

    & OOMMF User’s Guide, Version 1.0. Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, 1999).

  26. 26.

    , , & Vortex pinning at individual defects in magnetic nanodisks. J. Appl. Phys. 93, 7429–7431 (2003).

  27. 27.

    et al. Shifting and pinning of a magnetic vortex core in a permalloy dot by a magnetic field. Phys. Rev. Lett. 95, 237205 (2005).

  28. 28.

    , , , & Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B 70, 100406(R) (2004).

  29. 29.

    et al. Time-resolved spin-torque switching and enhanced damping in permalloy/Cu/permalloy spin-valve nanopillars. Phys. Rev. Lett. 96, 247204 (2006).

  30. 30.

    et al. Mechanisms limiting the coherence time of spontaneous magnetic oscillations driven by d.c. spin-polarized currents. Phys. Rev. B 72, 224427 (2005).

  31. 31.

    & Dynamics of a pinned magnetic vortex. Phys. Rev. Lett. 97, 137202 (2006).

  32. 32.

    et al. Spin-transfer excitations of permalloy nanopillars for large applied currents. Phys. Rev. B 72, 064430 (2005).

  33. 33.

    Classical noise. V. Noise in self-sustained oscillators. Phys. Rev. 160, 290–307 (1967).

  34. 34.

    Stochastic theory of spin-transfer oscillator linewidths. Phys. Rev. B 73, 174412 (2006).

  35. 35.

    , & Boltzmann test of Slonczewski’s theory of spin-transfer torque. Phys. Rev. B 70, 172405 (2004).

  36. 36.

    et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).

Download references

Acknowledgements

We thank P. Crowell for useful discussions and materials and M. Donahue for helpful guidance on the OOMMF simulations. This research was supported in part by the National Science Center through the NSEC program support for the Center for Nanoscale Systems, by ARO-DAAD19-01-1-0541 and by the Office of Naval Research/MURI program. Additional support was provided by NSF through use of the facilities of the Cornell Nanoscale Facility—NNIN and the facilities of the Cornell MRSEC.

Author information

Affiliations

  1. Cornell University, Ithaca, New York 14853, USA

    • V. S. Pribiag
    • , I. N. Krivorotov
    • , G. D. Fuchs
    • , P. M. Braganca
    • , O. Ozatay
    • , J. C. Sankey
    • , D. C. Ralph
    •  & R. A. Buhrman

Authors

  1. Search for V. S. Pribiag in:

  2. Search for I. N. Krivorotov in:

  3. Search for G. D. Fuchs in:

  4. Search for P. M. Braganca in:

  5. Search for O. Ozatay in:

  6. Search for J. C. Sankey in:

  7. Search for D. C. Ralph in:

  8. Search for R. A. Buhrman in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to I. N. Krivorotov or R. A. Buhrman.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys619

Further reading