Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shaped angular dependence of the spin-transfer torque and microwave generation without magnetic field

Abstract

The generation of oscillations in the microwave frequency range is one of the most important applications expected from spintronics devices exploiting the spin-transfer phenomenon, which is the reorientation of the magnetization of a ferromagnetic domain by spin-polarized current. Here we report transport and microwave power measurements on specially designed nanopillars, for which a non-standard angular dependence of the spin-transfer torque is predicted by theoretical models. We observe a new kind of current-induced dynamics that is characterized by large angle precessions in the absence of any applied field. This is also predicted by simulations including a ‘wavy’ angular dependence of the torque. This type of nanopillar, which is able to generate microwave oscillations in zero applied magnetic field, could represent an interesting method for the implementation of spin-transfer oscillators. We also emphasize the theoretical implications of our results on the angular dependence of the torque.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angular dependence of the STT for a standard and a ‘wavy’ angular dependence.
Figure 2: Transport measurements on nanopillars with standard or ‘wavy’ angular dependence of the STT.
Figure 3: Microwave power spectra for the Co(8 nm)/Cu(10 nm)/Py(8 nm) nanopillar of Fig. 2b,c.
Figure 4: Experimental and simulated spin-transfer-induced high-frequency dynamics for a Co(8 nm)/Cu(10 nm)/Py(8 nm) nanopillar.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  Google Scholar 

  3. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  ADS  Google Scholar 

  4. Grollier, J. et al. Magnetization reversal in Co/Cu/Co pillars by spin injection. Appl. Phys. Lett. 78, 3663–3665 (2001).

    Article  ADS  Google Scholar 

  5. Urazhdin, S., Birge, N. O., Pratt, W. P. & Bass, J. Switching current versus magnetoresistance in magnetic multilayer nanopillars. Appl. Phys. Lett. 84, 1516–1518 (2004).

    Article  ADS  Google Scholar 

  6. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  ADS  Google Scholar 

  7. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 . Phys. Rev. Lett. 92, 027201 (2004).

    Article  ADS  Google Scholar 

  8. Stiles, M. D. & Miltat, J. in Spin Dynamics in Confined Magnetic Structures, III (eds Hillebrands, B. & Thiaville, A.) (Springer, Berlin, 2006).

    Google Scholar 

  9. Waintal, X., Myers, E. B., Brouwer, P. W. & Ralph, D. C. Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys. Rev. B 62, 12317–12327 (2000).

    Article  ADS  Google Scholar 

  10. Slonczewski, J. Currents and torques in metallic magnetic multilayers. J. Magn. Magn. Mater. 247, 324–338 (2002).

    Article  ADS  Google Scholar 

  11. Zhang, S., Levy, P. M. & Fert, A. Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 236601 (2002).

    Article  ADS  Google Scholar 

  12. Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 66, 014407 (2002).

    Article  ADS  Google Scholar 

  13. Brataas, A., Bauer, G. E. W. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–256 (2006).

    Article  ADS  Google Scholar 

  14. Kovalev, A., Brataas, A. & Bauer, G. E. W. Spin transfer in diffusive ferromagnet–normal metal systems with spin-flip scattering. Phys. Rev. B 66, 224424 (2002).

    Article  ADS  Google Scholar 

  15. Fert, A. et al. Magnetization reversal by injection and transfer of spin. J. Magn. Magn. Mater. 272, 1706–1711 (2004).

    Article  ADS  Google Scholar 

  16. Barnaś, J., Fert, A., Gmitra, M., Weymann, I. & Dugaev, V. K. From giant magnetoresistance to current-induced switching by spin transfer. Phys. Rev. B 72, 024426 (2005).

    Article  ADS  Google Scholar 

  17. Barnaś, J., Fert, A., Gmitra, M., Weymann, I. & Dugaev, V. K. Macroscopic description of spin transfer torque. Mater. Sci. Eng. B 126, 271–274 (2006).

    Article  Google Scholar 

  18. Rezende, S. M., de Aguiar, F. M. & Azevedo, A. Magnon excitation by spin-polarized direct currents in magnetic nanostructures. Phys. Rev. B 73, 094402 (2006).

    Article  ADS  Google Scholar 

  19. Bertotti, G. et al. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents. Phys. Rev. Lett. 94, 127206 (2005).

    Article  ADS  Google Scholar 

  20. Slavin, A. N. & Kabos, P. Approximate theory of microwave generation in a current-driven magnetic nanocontact magnetized in an arbitrary direction. IEEE Trans. Magn. 41, 1264–1273 (2005).

    Article  ADS  Google Scholar 

  21. Rippard, W. H., Pufall, M. R. & Silva, T. J. Quantitative studies of spin-momentum-transfer-induced excitations in Co/Cu multilayer films using point-contact spectroscopy. Appl. Phys. Lett. 82, 1260–1262 (2003).

    Article  ADS  Google Scholar 

  22. Manschot, J., Brataas, A. & Bauer, G. E. W. Reducing the critical switching current in nanoscale spin valves. Appl. Phys. Lett. 85, 3250 (2004).

    Article  ADS  Google Scholar 

  23. Bass, J. & Pratt, W. P. Current-perpendicular (CPP) magnetoresistance in magnetic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

    Article  ADS  Google Scholar 

  24. Bass, J. & Pratt, W. P. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: An experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201 (2007).

    Article  ADS  Google Scholar 

  25. Gmitra, M. & Barnaś, J. Current-driven destabilization of both collinear configurations in asymmetric spin valves. Phys. Rev. Lett. 96, 207205 (2006).

    Article  ADS  Google Scholar 

  26. Kiselev, S. I. et al. Spin-transfer excitations of permalloy nanopillars for large applied currents. Phys. Rev. B 72, 064430 (2005).

    Article  ADS  Google Scholar 

  27. Chen, T. Y., Ji, Y. & Chien, C. L. Switching by point-contact spin injection in a continuous film. Appl. Phys. Lett. 84, 380–382 (2004).

    Article  ADS  Google Scholar 

  28. Acremann, Y. et al. Time-resolved imaging of spin transfer switching: Beyond the macrospin concept. Phys. Rev. Lett. 96, 217202 (2006).

    Article  ADS  Google Scholar 

  29. Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993).

    Article  ADS  Google Scholar 

  30. Berkov, D. V. & Gorn, N. L. Magnetization precession due to a spin polarized current. Phys. Rev. B 72, 024455 (2005).

    Article  Google Scholar 

  31. Urazhdin, S., Loloee, R. & Pratt, W. P. Noncollinear spin transport in magnetic multilayers. Phys. Rev. B 71, 100401 (2005).

    Article  ADS  Google Scholar 

  32. Pribiag, V. S. et al. Magnetic vortex oscillator by d.c. spin-polarized current. Preprint at <http://arxiv.org/abs/cond-mat/0702253> (2007).

  33. Pufall, M. R., Rippard, W. H., Schneider, M. & Russek, S. E. Low field, current-hysteretic oscillations in spin transfer nanocontacts. Preprint at <http://arxiv.org/abs/cond-mat/0702416> (2007).

  34. Novosad, V. et al. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005).

    Article  ADS  Google Scholar 

  35. Jaffrès, H. Programs for CPP-GMR. http://www.trt.thalesgroup.com/ump-cnrs-thales.

Download references

Acknowledgements

The authors thank M. Gmitra for the calculations of Fig. 1b on the basis of the model of ref. 16. We would also like to acknowledge H. Hurdequint for FMR measurements, L. Vila for assistance in fabrication, O. Copie and B. Marcilhac for assistance in transport and frequency measurements and M. R. Pufall for discussions. This work was partly supported by the French National Agency of Research, ANR, through the PNANO programme (MAGICO PNANO-05-044-02) and the EU through the Marie Curie Training Network SPINSWITCH (MRTN-CT-2006-035327). J.B. acknowledges support by funds from the Polish Ministry of Science and Higher Education as a research project (2006–2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulle, O., Cros, V., Grollier, J. et al. Shaped angular dependence of the spin-transfer torque and microwave generation without magnetic field. Nature Phys 3, 492–497 (2007). https://doi.org/10.1038/nphys618

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing