Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Twisted photons

Abstract

The orbital angular momentum of light represents a fundamentally new optical degree of freedom. Unlike linear momentum, or spin angular momentum, which is associated with the polarization of light, orbital angular momentum arises as a subtler and more complex consequence of the spatial distribution of the intensity and phase of an optical field — even down to the single photon limit. Consequently, researchers have only begun to appreciate its implications for our understanding of the many ways in which light and matter can interact, or its practical potential for quantum information applications. This article reviews some of the landmark advances in the study and use of the orbital angular momentum of photons, and in particular its potential for realizing high-dimensional quantum spaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of light with orbital angular momentum.
Figure 2: Observation of orbital angular momentum correlations with single photons.
Figure 3: Bell experiments with OAM modes.
Figure 4: Is cheating any harder in the quantum world?

© 2006 APS

Figure 5: The OAM of light can be used as a tool to manipulate and control quantum states of matter.

© 2006 APS

Similar content being viewed by others

References

  1. Allen, L., Padgett, M. J. & Babiker, M. The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. Soskin, M. S. & Vasnetsov, M. V. Singular optics. Prog. Opt. 42, 219–276 (2001).

    Article  ADS  Google Scholar 

  3. He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorbing particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    Article  ADS  Google Scholar 

  4. Dholakia, K., Spalding, G. & MacDonald, M. Optical tweezers: The next generation. Phys. World 15, 31–35 (2002).

    Article  Google Scholar 

  5. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  6. Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78, 249–251 (2001).

    Article  ADS  Google Scholar 

  7. Ladavac, K. & Grier, D. G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004).

    Article  ADS  Google Scholar 

  8. Voogd, R. J., Singh, M., Pereira, S., van de Nes, A. & Braat, J. in OSA Annual Meeting FTuG14 (Rochester, New York, October 2004).

    Google Scholar 

  9. Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnol. 21, 1347–1355 (2003).

    Article  Google Scholar 

  10. Torner, L., Torres, J. P. & Carrasco, S. Digital spiral imaging. Opt. Express 13, 873–881 (2005).

    Article  ADS  Google Scholar 

  11. Bernet, S., Jesacher, A., Fürhapter, S., Maurer, C. & Ritsch-Marte, M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express 14, 3792–3805 (2006).

    Article  ADS  Google Scholar 

  12. Swartzlander, G. The optical vortex lens. Opt. Photon. News 17, 39–43 (2006).

    Article  ADS  Google Scholar 

  13. Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

    Article  ADS  Google Scholar 

  14. Bouwmeester, D., Ekert, A. & Zeilinger, A. Eds. The Physics of Quantum Information (Springer, Berlin, 2000).

    Book  Google Scholar 

  15. Haroche, S. & Raimond, J. M. Exploring the Quantum: Atoms, cavities and Photons (Oxford Univ. Press, Oxford, 2006).

    Book  Google Scholar 

  16. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, New York, 1989).

    Google Scholar 

  17. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1999).

    MATH  Google Scholar 

  18. Torres, J. P., Alexandrescu, A. & Torner, L. Quantum spiral bandwidth of entangled two-photon states. Phys. Rev. A 58, 050301 (2003).

    Article  Google Scholar 

  19. Law, C. K., Walmsley, I. A. & Eberly, J. H. Continuous frequency entanglement: effective finite Hilbert space and entropy control. Phys. Rev. Lett. 84, 5304–5307 (2000).

    Article  ADS  Google Scholar 

  20. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  21. Molina-Terriza, G., Torres J. P. & Torner, L. Management of the orbital angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2002).

    Article  ADS  Google Scholar 

  22. Bazhenov, V. Y., Vasnetsov, M. V. & Soskin, M. S. Laser beams with screw dislocations in their wavefonts. JETP Lett. 52, 429–431 (1990).

    Google Scholar 

  23. Heckenberg, N. R., McDuff, R., Smith, C. P. & White, A. G. Generation of optical phase singularities by computer generated holograms. Opt. Lett. 17, 221–223 (1992).

    Article  ADS  Google Scholar 

  24. Nienhuis, G. & Allen, L. Paraxial wave optics and harmonic oscillators. Phys. Rev. A 48, 656–665 (1993).

    Article  ADS  Google Scholar 

  25. Akamatsu, D. & Kozuma, M. Coherent transfer of orbital angular momentum from an atomic system to a light field. Phys. Rev. A 67, 023803 (2003).

    Article  ADS  Google Scholar 

  26. Arnaut, H. H. & Barbosa, G. A. Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion. Phys. Rev. Lett. 85, 286–289 (2000).

    Article  ADS  Google Scholar 

  27. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  28. Vaziri, A., Weihs, G. & Zeilinger, A. Superpositions of the orbital angular momentum for applications in quantum experiments. J. Opt. B 4, S47–S51 (2002).

    Article  ADS  Google Scholar 

  29. Oemrawsingh, S. S. R. et al. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett. 95, 240501 (2005).

    Article  ADS  Google Scholar 

  30. Molina-Terriza, G., Vaziri, A., Rehacek, J., Hradil, Z. & Zeilinger, A. Triggered qutrits for quantum communication protocols. Phys. Rev. Lett. 92, 167903 (2004).

    Article  ADS  Google Scholar 

  31. Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).

    Article  ADS  Google Scholar 

  32. Bloembergen, N. in Polarization, Matiere et Rayonnement (ed. Cohen-Tannoudji, C.) 109–119 (Presses Universitaires, Paris, 1969).

    Google Scholar 

  33. Barbosa, G. A. & Arnaut, H. H. Twin photons with angular-momentum entanglement: phase matching. Phys. Rev. A 65, 053801 (2002).

    Article  ADS  Google Scholar 

  34. Franke-Arnold, S., Barnett, S. M., Padgett, M. J. & Allen, L. Two-photon entanglement of orbital angular momentum states. Phys. Rev. A 85, 033823 (2002).

    Article  ADS  Google Scholar 

  35. Torres, J. P., Molina-Terriza, G. & Torner, L. The spatial shape of entangled photon states generated in non-collinear, walking parametric downconversion. J. Opt. B 7, 235–239 (2005).

    Article  ADS  Google Scholar 

  36. Walborn, S. P., de Oliveira, A. N., Thebaldi, R. S. & Monken, C. H. Entanglement and conservation of orbital angular momentum in sponatenous parametric down-conversion. Phys. Rev. A 69, 023811 (2004).

    Article  ADS  Google Scholar 

  37. Altman, A. R., Koprolu, K. G., Corndorf, E., Kumar, P. & Barbosa, G. A. Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum. Phys. Rev. Lett. 94, 123601 (2005).

    Article  ADS  Google Scholar 

  38. Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

    Article  ADS  Google Scholar 

  39. Molina-Terriza, G. et al. Control of the shape of the spatial mode function of photons generated in noncollinear spontaneous parametric down-conversion. Phys. Rev. A 72, 065802 (2005).

    Article  ADS  Google Scholar 

  40. Torres, J. P., Osorio, C. I. & Torner, L. Orbital angular momentum of entangled counter propagating photons. Opt. Lett. 29, 1939–1941 (2004).

    Article  ADS  Google Scholar 

  41. Torres, J. P., Deyanova, Y., Torner, L. & Molina-Terriza, G. Preparation of engineered twophoton entangled states for multidimensional quantum information. Phys. Rev. A 67, 052313 (2003).

    Article  ADS  Google Scholar 

  42. Torres, J. P., Alexandrescu, A., Carrasco, S. & Torner, L. Quasi-phase-matching engineering for spatial control of entangled two-photon states. Opt. Lett. 29, 376–378 (2004).

    Article  ADS  Google Scholar 

  43. Vaziri, A., Pan, J. W., Jennewein, T., Weihs, G. & Zeilinger, A. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902 (2003).

    Article  ADS  Google Scholar 

  44. Peres, A. Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1995).

    MATH  Google Scholar 

  45. Law, C. K. & Eberly, J. H. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett. 92, 127903 (2004).

    Article  ADS  Google Scholar 

  46. Chan, K. W., Torres, J. P. & Eberly, J. H. Transverse entanglement migration in Hilbert space. Phys. Rev. A (in the press); preprint at http://www.arxiv.org/quant-ph/0608163 (2006).

    Google Scholar 

  47. Vaziri, A., Weihs, G. & Zeilinger, A. Experimental two-photon, three dimensional entanglement for quantum communications. Phys. Rev. Lett. 89, 240401 (2002).

    Article  ADS  Google Scholar 

  48. Langford, N. K. et al. Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601 (2004).

    Article  ADS  Google Scholar 

  49. Kaszlikowski, D., Gnacinski, P., Zukowski, M., Miklaszewski, W. & Zeilinger, A. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000).

    Article  ADS  Google Scholar 

  50. Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  51. Acin, A., Durt, D., Gisin, N. & Latorre, J. I. Quantum nonlocality in two three-level systems. Phys. Rev. A 65, 052325 (2002).

    Article  ADS  Google Scholar 

  52. Molina-Terriza, G., Vaziri, A., Ursin, R. & Zeilinger, A. Experimental quantum coin tossing. Phys. Rev. Lett. 94, 040501 (2005).

    Article  ADS  Google Scholar 

  53. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyper-entangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article  ADS  Google Scholar 

  54. Massar, S. Nonlocality, closing the detection loophole, and communication complexity. Phys. Rev. A 65, 032121 (2002).

    Article  ADS  Google Scholar 

  55. Bruss, D. Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018–3021 (1998).

    Article  ADS  Google Scholar 

  56. Bechmann-Pasquinucci, H. & Peres, A. Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313–3316 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  57. Groblacher, S., Jennewein, T., Vaziri, A., Weihs, G. & Zeilinger, A. Experimental quantum crytography with qutrits. New J. Phys. 8, 75 (2006).

    Article  ADS  Google Scholar 

  58. Tabosa, J. W. R. & Petrov, D. V. Optical pumping of orbital angular momentum of light in cold cesium atoms. Phys. Rev. Lett. 83, 4967–4970 (1999).

    Article  ADS  Google Scholar 

  59. Barreiro, S. & Tabosa, J. W. R. Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms. Phys. Rev. Lett. 90, 133001 (2003).

    Article  ADS  Google Scholar 

  60. Barreiro, S., Tabosa, J. W. R., Torres, J. P., Deyanova, Y. & Torner, L. Four-wave mixing of light beams with engineered orbital angular momentum in cold cesium atoms. Opt. Lett. 29, 1515–1517 (2004).

    Article  ADS  Google Scholar 

  61. Andersen, M. F. et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006).

    Article  ADS  Google Scholar 

  62. Inoue, R. et al. Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon. Phys. Rev. A 74, 053809 (2006).

    Article  ADS  Google Scholar 

  63. Barreiro, S., Tabosa, J. W. R., Failache, H. & Lezama, A. Spectroscopic observation of the rotational Doppler effect. Phys. Rev. Lett. 97, 133601 (2006).

    Article  Google Scholar 

  64. Liu, X. J., Liu, X., Kwek, L. C. & Oh, C. H. Optically induced spin-Hall effect in atoms. Phys. Rev. Lett. 98, 026602 (2006).

    Article  ADS  Google Scholar 

  65. Ren, X. F., Guo, G. P., Huang, Y. F. & Guo, G. C. Plasmon-assisted transmission of highdimensional orbital angular momentum entangled states. Europhys. Lett. 76, 753–759 (2006).

    Article  ADS  Google Scholar 

  66. Bennett, C. H. et al. Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  67. Greentree, A. D. et al. Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92, 097901 (2004).

    Article  ADS  Google Scholar 

  68. Jozsa, R. & Schlienz, J. Distinguishability of states and von Neumann entropy. Phys. Rev. A 62, 012301 (2000).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Generalitat de Catalunya, by the European Commission under the integrated project Qubit Applications (QAP) funded by the IST directorate (Contract No. 015848), and by the Ministerio de Educacion y Ciencia/Government of Spain (Consolider Ingenio 2010 QIOT CSD2006-00019, FIS2004-03556, and TEC2005-07815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Torres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Terriza, G., Torres, J. & Torner, L. Twisted photons. Nature Phys 3, 305–310 (2007). https://doi.org/10.1038/nphys607

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing