Article | Published:

Plasma mirrors for ultrahigh-intensity optics

Nature Physics volume 3, pages 424429 (2007) | Download Citation

Subjects

Abstract

Specular reflection is one of the most fundamental processes of optics. At moderate light intensities generated by conventional light sources this process is well understood. But at those capable of being produced by modern ultrahigh-intensity lasers, many new and potentially useful phenomena arise. When a pulse from such a laser hits an optically polished surface, it generates a dense plasma that itself acts as a mirror, known as a plasma mirror (PM). PMs do not just reflect the remainder of the incident beam, but can act as active optical elements. Using a set of three consecutive PMs in different regimes, we significantly improve the temporal contrast of femtosecond pulses, and demonstrate that high-order harmonics of the laser frequency can be generated through two distinct mechanisms. A better understanding of these processes should aid the development of laser-driven attosecond sources for use in fields from materials science to molecular biology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Generation of 130-fsec midinfrared pulses. J. Opt. Soc. Am. B 3, 1625–1629 (1986).

  2. 2.

    , & Sub-10 fs gating of optical pulses. J. Phys. B 34, 2993–3002 (2001).

  3. 3.

    , , & Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490–492 (1991).

  4. 4.

    et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402 (2004).

  5. 5.

    , , & The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 75, 645–649 (2004).

  6. 6.

    , & Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006).

  7. 7.

    et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

  8. 8.

    , , & Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface. J. Opt. Soc. Am. B 15, 1904–1911 (1998).

  9. 9.

    , , & Relativistic doppler effect: Universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002 (2004).

  10. 10.

    , , , & Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett. 92, 063902 (2004).

  11. 11.

    , , & Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

  12. 12.

    , & Relativistic plasma control for single attosecond x-ray burst generation. Phys. Rev. E 74, 065401 (2006).

  13. 13.

    & The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813 (2004).

  14. 14.

    et al. High-order harmonic generation by nonlinear reflection of an intense high-contrast laser pulse on a plasma. Opt. Lett. 29, 893–895 (2004).

  15. 15.

    et al. Measurements of relativistic self-phase-modulation in plasma. Phys. Rev. E 66, 036409 (2002).

  16. 16.

    , , & High dynamic-range 3rd-order correlation-measurement of picosecond laser-pulse shapes. Meas. Sci. Technol. 4, 1426–1429 (1993).

  17. 17.

    , , , & Generation of 1011 contrast 50 TW laser pulses. Opt. Lett. 31, 1456–1458 (2006).

  18. 18.

    et al. Coherence and bandwidth measurements of harmonics generated from solid surfaces irradiated by intense picosecond laser pulses. Phys. Rev. A 54, 1597–1603 (1996).

  19. 19.

    , & Visible harmonic emission as a way of measuring profile steepening. Phys. Rev. Lett. 46, 29–32 (1981).

  20. 20.

    , & Observation of harmonics in the visible and ultraviolet created in CO2-laser-produced plasmas. Phys. Rev. A 24, 2649–2663 (1981).

  21. 21.

    , & Plasma mechanism for ultraviolet harmonic radiation due to intense CO2 light. Phys. Rev. Lett. 49, 202–205 (1982).

  22. 22.

    , & Harmonic generation of radiation in a steep density profile. Phys. Fluids 26, 1904–1908 (1983).

  23. 23.

    , & Odd harmonic-generation of ultra-intense laser-pulses reflected from an overdense plasma. IEEE Trans. Plasma Sci. 21, 120–124 (1993).

  24. 24.

    , & Interaction of an ultrashort, relativistically strong laser-pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994).

  25. 25.

    Harmonic generation by femtosecond laser-solid interaction: A coherent water-window light source? Phys. Rev. Lett. 76, 50–53 (1996).

  26. 26.

    , & Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).

  27. 27.

    & High-order optical harmonic generation from solid surfaces. Appl. Phys. B 63, 499–506 (1996).

  28. 28.

    & Plasma harmonic emission from laser interactions with dense plasma. Phys. Plasmas 7, 1520–1530 (2000).

  29. 29.

    et al. Attosecond pulse generation in the relativistic regime of the laser-foil interaction: The sliding mirror model. Phys. Plasmas 13, 013107 (2006).

  30. 30.

    , & Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006).

  31. 31.

    et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

  32. 32.

    et al. Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses. Phys. Rev. Lett. 92, 185001 (2004).

  33. 33.

    et al. Dynamics of the critical surface in high-intensity laser-solid interactions: Modulation of the XUV harmonic spectra. Phys. Rev. Lett. 88, 155001 (2002).

  34. 34.

    et al. Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses. Phys. Rev. A 52, R25 (1995).

  35. 35.

    et al. Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets. Phys. Rev. Lett. 76, 1832–1835 (1996).

  36. 36.

    et al. Generation of high-order spatially coherent harmonics from solid targets by femtosecond laser pulses. Phys. Rev. A 62, 023816 (2000).

  37. 37.

    et al. Anomalies in high-order harmonic generation at relativistic intensities. Phys. Rev. A 67, 013816 (2003).

  38. 38.

    Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987).

  39. 39.

    , , & Laser interaction with a sharp-edged overdense plasma. Laser Part. Beams 9, 339–354 (1991).

  40. 40.

    Classical Electrodynamics (Wiley, New York, 1998).

  41. 41.

    , , & Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003 (2005).

  42. 42.

    , & Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, 123103 (2005).

  43. 43.

    , , & Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers. Opt. Lett. 19, 201–203 (1994).

  44. 44.

    et al. Frequency chirp of harmonic and attosecond pulses. J. Mod. Opt. 52, 379–394 (2005).

  45. 45.

    & Generation of ultrahigh intensity laser pulses. Phys. Plasmas 10, 2056–2063 (2003).

  46. 46.

    , , , & Manipulating ultrashort intense laser pulses by plasma Bragg gratings. Phys. Plasmas 12, 113103 (2005).

  47. 47.

    et al. Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95, 205003 (2005).

  48. 48.

    , & Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31, 274–276 (2006).

  49. 49.

    , , & High-throughput, high-damage-threshold broadband beam splitter for high-order harmonics in the extreme-ultraviolet region. Opt. Lett. 29, 507–509 (2004).

  50. 50.

    & Particle code study of the influence of non-monochromaticity of laser-light on stimulated Raman-scattering in laser-irradiated plasmas. Nucl. Fusion 26, 633–646 (1986).

Download references

Acknowledgements

Financial support from the Conseil Général de l’Essonne (ASTRE program) is acknowledged.

Author information

Affiliations

  1. Service des Photons, Atomes et Molécules, Commissariat à l’Energie Atomique, DSM/DRECAM, CEN Saclay, 91191 Gif-sur-Yvette, France

    • C. Thaury
    • , F. Quéré
    • , A. Levy
    • , T. Ceccotti
    • , P. Monot
    • , M. Bougeard
    • , F. Réau
    • , P. d’Oliveira
    •  & Ph. Martin
  2. Laboratoire pour l’Utilisation des Lasers Intenses, CNRS, Ecole Polytechnique, 91128 Palaiseau, France

    • J.-P. Geindre
    •  & P. Audebert
  3. Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St George Street, Toronto, Ontario M5S 1A7, Canada

    • R. Marjoribanks

Authors

  1. Search for C. Thaury in:

  2. Search for F. Quéré in:

  3. Search for J.-P. Geindre in:

  4. Search for A. Levy in:

  5. Search for T. Ceccotti in:

  6. Search for P. Monot in:

  7. Search for M. Bougeard in:

  8. Search for F. Réau in:

  9. Search for P. d’Oliveira in:

  10. Search for P. Audebert in:

  11. Search for R. Marjoribanks in:

  12. Search for Ph. Martin in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to F. Quéré.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys595

Further reading