Review Article | Published:

Optical magnetometry

Nature Physics volume 3, pages 227234 (2007) | Download Citation

Subjects

Abstract

Some of the most sensitive methods of measuring magnetic fields use interactions of resonant light with atomic vapour. Recent developments in this vibrant field have led to improvements in sensitivity and other characteristics of atomic magnetometers, benefiting their traditional applications for measurements of geomagnetic anomalies and magnetic fields in space, and opening many new areas previously accessible only to magnetometers based on superconducting quantum interference devices. We review basic principles of modern optical magnetometers, discuss fundamental limitations on their performance, and describe recently explored applications for dynamical measurements of biomagnetic fields, detecting signals in NMR and MRI, inertial rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of nature.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments. J. Phys. Radium 11, 255–265 (1950).

  2. 2.

    Modulation of a light beam by precessing absorbing atoms. Phys. Rev. 105, 1924–1925 (1957).

  3. 3.

    & Optical detection of magnetic resonance in alkali metal vapor. Phys. Rev. 107, 1559–1565 (1957).

  4. 4.

    & Optically driven spin precession. Phys. Rev. Lett. 6, 280–281 (1961).

  5. 5.

    Principles of operation of the rubidium vapor magnetometer. Appl. Opt. 1, 61–68 (1962).

  6. 6.

    , & Detection of very weak magnetic fields (10−9 gauss) by 87Rb zero-field level crossing resonances. Phys. Lett. A 28, 638–639 (1969).

  7. 7.

    et al. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002).

  8. 8.

    et al. Dynamic effects in nonlinear magneto-optics of atoms and molecules: Review. J. Opt. Soc. Am. B 22, 7–20 (2005).

  9. 9.

    , , & Experimental demonstration of the sensitivity of an optically pumped quantum magnetometer. Tech. Phys. 49, 779–783 (2004).

  10. 10.

    , , , & Sensitive magnetometry based on nonlinear magneto-optical rotation. Phys. Rev. A 62, 043403 (2000).

  11. 11.

    , , , & A high-sensitivity laser-pumped Mx magnetometer. Eur. Phys. J. D 38, 239–247 (2006).

  12. 12.

    , , & A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

  13. 13.

    & The SQUID Handbook (Wiley-VCH, Weinheim, 2004).

  14. 14.

    , & Comparison of discharge lamp and laser pumped cesium magnetometers. Appl. Phys. B. 80, 645–654 (2005).

  15. 15.

    , & The design of a λ-hfs magnetometer. Techn. Phys. 45, 88–93 (2000).

  16. 16.

    , & Suppression of spin projection noise in broadband atomic magnetometry. Phys. Rev. Lett. 94, 203002 (2005).

  17. 17.

    et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).

  18. 18.

    , , & Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005).

  19. 19.

    & Effective operator formalism in optical pumping. Phys. Rev. 163, 12–25 (1967).

  20. 20.

    , & Quantum limit of optical magnetometry in the presence of ac stark shifts. Phys. Rev. A 62, 013808 (2000).

  21. 21.

    , , , & Compensation of ac stark shifts in optical magnetometry. Phys. Rev. A 63, 063802 (2001).

  22. 22.

    , & Preservation of spin state in free atom-inert surface collisions. Bull. Am. Phys. Soc. 3, 9 (1958).

  23. 23.

    & Relaxation of optically pumped Rb atoms on paraffin-coated walls. Phys. Rev. 147, 41–54 (1966).

  24. 24.

    et al. Light-induced desorption of alkali-metal atoms from paraffin coating. Phys. Rev. A 66, 042903 (2002); Erratum. Phys. Rev. A 70, 049902(E) (2004).

  25. 25.

    & Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys. Rev. Lett. 31, 273–276 (1973).

  26. 26.

    & Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields. Phys. Rev. A 71, 23405 (2005).

  27. 27.

    et al. Spin relaxation resonances due to the spin-axis interaction in dense rubidium and cesium vapor. Phys. Rev. Lett. 85, 4237–4240 (2000).

  28. 28.

    , & Field dependence of spin relaxation in a dense Rb vapor. Phys. Rev. Lett. 80, 5512–5515 (1998).

  29. 29.

    , , & A high-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801 (2002).

  30. 30.

    & Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl. Phys. Lett. 85, 4804–4806 (2004).

  31. 31.

    , , & Light narrowing of rubidium magneticresonance lines in high-pressure optical-pumping cells. Phys. Rev. A 59, 2078–2084 (1999).

  32. 32.

    et al. Intense, narrow atomic-clock resonances. Phys. Rev. Lett. 92, 110801 (2004).

  33. 33.

    , , , & A low-noise high-density alkali metal scalar magnetometer. Preprint at (2006).

  34. 34.

    , , , & Picotesla magnetometry with coherent dark states. Europhys. Lett. 54, 323–328 (2001).

  35. 35.

    et al. Two-color coherent population trapping in a single Cs hyperfine transition, with application in magnetometry. Appl. Phys. B 76, 667–675 (2003).

  36. 36.

    et al. Coherent population trapping for magnetic field measurements. Proc. SPIE 5830, 170–175 (2005).

  37. 37.

    et al. Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys. Rev. A 73, 053404 (2006).

  38. 38.

    , & Synchronous optical pumping of quantum revival beats for atomic magnetometry. Preprint at (2006).

  39. 39.

    , & Observation of four-quantum resonance in the Zeeman structure of the ground-state of 39K. Opt. Spectrosk. 82, 14–20 (1997).

  40. 40.

    et al. Selective addressing of high-rank atomic polarization moments. Phys. Rev. Lett. 90, 253001 (2003).

  41. 41.

    et al. Pump-probe nonlinear magnetooptical rotation with frequency-modulated light. Phys. Rev. A 73, 023817 (2006).

  42. 42.

    , , & On the calibration of a vectorial 4He pumped magnetometer. Earth Planets Space 53, 949–958 (2001).

  43. 43.

    et al. Three-component variometer based on a scalar potassium sensor. Meas. Sci. Technol. 15, 918–922 (2004).

  44. 44.

    , & Magnetometer based on the opto-electronic microwave oscillator. Opt. Commun. 247, 141–148 (2005).

  45. 45.

    , & Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation. Rev. Sci. Instrum. 76, 126103 (2005).

  46. 46.

    , & Robust, high-speed, all-optical atomic magnetometer. Rev. Sci. Instrum. 77, 113106 (2006).

  47. 47.

    Feedback for physicists: A tutorial essay on control. Rev. Mod. Phys. 77, 783–836 (2005).

  48. 48.

    & Single-tone parameter estimation from discrete-time observations. IEEE Trans. Inform. Theory 20, 591–598 (1974).

  49. 49.

    1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537571 (1988).

  50. 50.

    , & Parametric modulation of an atomic magnetometer. Appl. Phys. Lett. 89, 134105 (2006).

  51. 51.

    , , , & Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells. J. Opt. Soc. Am. B 23, 1001–1006 (2006).

  52. 52.

    et al. Chip-scale atomic magnetometer. Appl. Phys. Lett. 85, 6409–6411 (2004).

  53. 53.

    , , , & Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances. Phys. Rev. A 74, 063406 (2006).

  54. 54.

    et al. Sensing electric and magnetic fields with Bose-Einstein condensates. Appl. Phys. Lett. 88, 264103 (2006).

  55. 55.

    et al. High-resolution magnetometry with a spinor Bose-Einstein condensate. Preprint at (2006).

  56. 56.

    & Evanescent wave magnetometer. Appl. Phys. Lett. 89, 261113 (2006).

  57. 57.

    , & Clinical application of magnetocardiography. Exp. Rev. Mol. Diagn. 5, 291–313 (2005).

  58. 58.

    , , , & Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).

  59. 59.

    , , , & A review of clinical applications of magnetoencephalography. Int. Rev. Neurobiol. 68, 223–247 (2005).

  60. 60.

    et al. Recording of human magnetic fields. Doklady Akademii Nauk SSSR 238, 253–256 (1977).

  61. 61.

    , & A laser-pumped magnetometer for the mapping of human cardiomagnetic fields. Appl. Phys. B. 76, 325–328 (2003).

  62. 62.

    , , & Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006).

  63. 63.

    , , & New limits on the electron electric dipole moment from cesium. Phys. Rev. Lett. 63, 965–968 (1989).

  64. 64.

    et al. New limits on local Lorentz invariance from Hg and Cs magnetometers. Phys. Rev. Lett. 75, 1879–1882 (1995).

  65. 65.

    , , , & Limits on spin-mass couplings within the axion window. Phys. Rev. Lett. 77, 2170–2173 (1996).

  66. 66.

    , & 3He maser for earth magnetic field measurement. Rev. Sci. Instrum. 74, 4515–4520 (2003).

  67. 67.

    , , & New limit on the permanent electric dipole moment of 199Hg. Phys. Rev. Lett. 86, 2505–2508 (2001).

  68. 68.

    et al. Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006).

  69. 69.

    & Electric dipole moments as probes of new physics. Ann. Phys. 318, 119–169 (2005).

  70. 70.

    , , , & Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser. Phys. Rev. Lett. 85, 5038–5041 (2000); Erratum. Phys. Rev. Lett. 89, 209902 (2002).

  71. 71.

    , , , & Measurement of an electron's electric dipole moment using Cs atoms trapped in optical lattices. Phys. Rev. A 63, 033401 (2001).

  72. 72.

    , & Demonstration of a cold atom fountain electron electric dipole moment experiment. (2006).

  73. 73.

    Solid-state systems for the electron electric dipole moment and other fundamental measurements. Phys. Rev. A 66, 022109 (2002).

  74. 74.

    , , & On the sensitivity of condensed-matter P- and T-violation experiments. Phys. Rev. A 73, 022107 (2006).

  75. 75.

    in Encyclopedia of Planetary Sciences (eds Shirley, J. H. & Fairbridge, R. W.) 406–410 (Chapman & Hall, London, 1997).

  76. 76.

    in IEE Colloquium on Satellite Instrumentation Digest No. 12, 2/1–3 (IEE, London, 1988).

  77. 77.

    , , & Operation of the dual magnetometer on Cassini: science performance. Planet. Space Sci. (UK) 47, 1389–1405 (1999).

  78. 78.

    et al. Cassini magnetometer observations during Saturn orbit insertion. Science 307, 1266–1270 (2005).

  79. 79.

    et al. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006).

  80. 80.

    , , & in IEEE Proc. Conf. Oceans 2002 Vol. 2, 945–951 (IEEE, London, 2002).

  81. 81.

    High-sensitivity helium resonance magnetometers. Rev. Sci. Instrum. 58, 1067–1076 (1987).

  82. 82.

    et al. A transition to fast flows and its effects on the magnetic fields and cosmic rays observed by Voyager 2 near 70 au. Astrophys. J. 618, 1074–1078 (2005).

  83. 83.

    Application of superconducting quantum interference devices to nuclear magnetic resonance. Rev. Mod. Phys. 70, 175–222 (1998).

  84. 84.

    , , & Laloë, F. Detection of the static magnetic field produced by the oriented nuclei of optically pumped 3He gas. Phys. Rev. Lett. 22, 758–760 (1969).

  85. 85.

    et al. Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry. Phys. Rev. Lett. 93, 160801 (2004).

  86. 86.

    & NMR detection with an atomic magnetometer. Phys. Rev. Lett. 94, 123001 (2005).

  87. 87.

    et al. Amplification of xenon NMR and MRI by remote detection. Proc. Natl Acad. Sci. USA 100, 9122–9127 (2003).

  88. 88.

    , , , & Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation. Rev. Sci. Instrum. 77, 083106 (2006).

  89. 89.

    et al. Magnetic resonance imaging with an optical atomic magnetometer. Proc. Natl Acad. Sci. USA 103, 12668–12671 (2006).

  90. 90.

    et al. Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms. Phys. Rev. A 39, 5613–5623 (1989).

  91. 91.

    , & The nuclear magnetic resonance gyroscope: a review. J. Navigation 40, 366–384 (1987).

  92. 92.

    , & Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett. 95, 230801 (2005).

  93. 93.

    , , & Alignment-to-orientation conversion and nuclear quadrupole resonance. Chem. Phys. Lett. 378, 440–448 (2003).

  94. 94.

    et al. Remote sensing by nuclear quadrupole resonance. IEEE Trans. Geosci. Remote Sens. (USA) 39, 1108–1118 (2001).

  95. 95.

    et al. Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation. Phys. Rev. A 75, 023405 (2007).

  96. 96.

    , , , & Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance. Appl. Phys. Lett. 89, 214106 (2006).

  97. 97.

    , & Detection of NMR signals with a radio-frequency atomic magnetometer. J. Magn. Res. 185, 227–233 (2007).

  98. 98.

    et al. Ultrastable CO2 laser trapping of lithium fermions. Phys. Rev. Lett. 82, 4204–4207 (1999).

  99. 99.

    , , , & Images of interlayer Josephson vortices in Tl2Ba2 CuO6+δ. Science 279, 1193–1196 (1998).

  100. 100.

    , , , & Scanning SQUID microscopy of integrated circuits. Appl. Phys. Lett. 76, 2304–2306 (2000).

Download references

Acknowledgements

This work is supported by DOD MURI grant No. N00014-05-1-0406. We are grateful to E. B. Alexandrov, M. V. Balabas, G. Bison, S. Bale, W. Gawlik, J. Higbie, M. Ledbetter, I. M. Savukov, D. Stamper-Kurn, A. Sushkov, M. Vengalattore and A. Weis for providing valuable input for this review.

Author information

Affiliations

  1. Department of Physics, University of California, Berkeley, California 94720-7300, USA

    • Dmitry Budker
  2. Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, USA

    • Dmitry Budker
  3. Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

    • Michael Romalis

Authors

  1. Search for Dmitry Budker in:

  2. Search for Michael Romalis in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Dmitry Budker or Michael Romalis.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphys566

Further reading