Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluctuating Cu–O–Cu bond model of high-temperature superconductivity

Abstract

Twenty years of research have yet to produce a consensus on the origin of high-temperature superconductivity (HTS). However, several generic characteristics of the copper oxide superconductors have emerged as the essential ingredients of and/or constraints on any viable microscopic model of HTS. Besides a critical temperature Tc of the order of 100 K, they include a d-wave superconducting gap with Fermi liquid nodal excitations, a pseudogap with d-symmetry and the characteristic temperature scale T*, an anomalous doping-dependent oxygen isotope shift, nanometre-scale gap inhomogeneity and so on. The isotope shift implies a key role for oxygen vibrations, but conventional Bardeen–Cooper–Schrieffer single-phonon coupling is essentially forbidden by symmetry and by the on-site Coulomb interaction U. Here we invoke the nonlinear modulation of the Cu–Cu bond by planar oxygen vibrations. The Fermi liquid nature of the d-wave superconducting ground state supports a weak-coupling treatment of this modulation. The dominant fluctuations are manifested in a pattern of oxygen vibrational square amplitudes with quadrupolar symmetry around a given Cu site. On the basis of such bond fluctuations, both dynamic and static, we can understand the salient features of HTS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen degrees of freedom and electron–phonon coupling.
Figure 2: The pairing interaction.
Figure 3: The fluctuating bond field.
Figure 4: Transition-temperature and isotope-shift calculations compared with experimental data.
Figure 5: Superconductivity-induced Raman shift.
Figure 6: HTS phase diagram in temperature-versus-doping plane.

Similar content being viewed by others

References

  1. Leggett, A. J. What do we know about high Tc? Nature Phys. 2, 134–136 (2006).

    Article  ADS  Google Scholar 

  2. Bonn, D. A. Are high-temperature superconductors exotic? Nature Phys. 2, 159–168 (2006).

    Article  ADS  Google Scholar 

  3. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969 (2000).

    Article  ADS  Google Scholar 

  4. Norman, M. R. et al. Destruction of the Fermi surface in high-Tc superconductors. Nature 392, 157–160 (1998).

    Article  ADS  Google Scholar 

  5. Moler, K. A. et al. Magnetic field dependence of the density of states of YBa2Cu3O6.95 as determined from the specific heat. Phys. Rev. Lett. 73, 2744–2747 (1994).

    Article  ADS  Google Scholar 

  6. Lee, P. A. Localized states in a d-wave superconductor. Phys. Rev. Lett. 71, 1887–1890 (1993).

    Article  ADS  Google Scholar 

  7. Chiao, M. et al. Low-energy quasiparticles in cuprate superconductors: A quantitative analysis. Phys. Rev. B 62, 3554–3558 (2000).

    Article  ADS  Google Scholar 

  8. Proust, C. et al. Heat transport in a strongly overdoped cuprate: Fermi liquid and a pure d-wave BCS superconductor. Phys. Rev. Lett. 89, 147003 (2002).

    Article  ADS  Google Scholar 

  9. Achkir, D, Poirier, M., Bonn, D. A., Liang, R. & Hardy, W. N. Temperature dependence of the in-plane penetration depth of YBa2Cu3O6.95 and YBa2(Cu0.9985Zn0.0015)3O6.95 crystals from T to T2. Phys. Rev. B 48, 13184–113187 (1993).

    Article  ADS  Google Scholar 

  10. Zhou, X. J. et al. Dichotomy between nodal and antinodal quasiparticles in underdoped La2−xSrxCuO4 . Phys. Rev. Lett. 92, 187001–187005 (2004).

    Article  ADS  Google Scholar 

  11. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004).

    Article  Google Scholar 

  12. Pringle, D. J., Williams, G. V. M. & Tallon, J. L. Effect of doping and impurities on the oxygen isotope effect in high-temperature superconducting cuprates. Phys. Rev. B 62, 12527–12533 (2000).

    Article  ADS  Google Scholar 

  13. Devereaux, T. P., Cuk, T., Shen, Z.-X. & Nagaosa, N. Anisotropic electron–phonon interaction in the cuprates. Phys. Rev. Lett. 93, 117004 (2004).

    Article  ADS  Google Scholar 

  14. Pintschovius, L. Electron–phonon coupling effects explored by inelastic neutron scattering. Phys. Status Solidi B 242, 30–50 (2005).

    Article  ADS  Google Scholar 

  15. McQueeney, R. J. et al. Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 at low temperatures. Phys. Rev. Lett. 82, 628 (1999).

    Article  ADS  Google Scholar 

  16. Uchuyama, H. et al. Softening of Cu–O bond stretching phonons in tetragonal HgBa2CuO4+δ . Phys. Rev. Lett. 92, 197005 (2004).

    Article  ADS  Google Scholar 

  17. Hewitt, K. c. et al. Hole concentration and phonon renormalization of the 340 cm−1 B1g mode in 2% Ca-doped YBa2CuOy (6.76y7.00). Phys. Rev. B 69, 064514 (2004).

    Article  ADS  Google Scholar 

  18. Zhou, Z., Cardona, M., Colson, D. & Viallet, V. Plane oxygen vibrations and their temperature dependence in HgBa2Ca2Cu3O8+δ . Phys. Rev. B 55, 12770–12775 (1997).

    Article  ADS  Google Scholar 

  19. Harashina, H. et al. Superconductivity-induced B2u phonon anomalies of YBa2Cu3O6+x and symmetry of the order parameter. Neutron inelastic scattering studies. Physica C 263, 257–259 (1996).

    Article  ADS  Google Scholar 

  20. Reznik, D., Keimer, B, Dogan, F. & Aksay, I. A. q dependence of self-energy effects of the plane oxygen vibrations in YBa2Cu3O7 . Phys. Rev. Lett. 75, 2396–2399 (1995).

    Article  ADS  Google Scholar 

  21. Chung, J. H. et al. In-plane anisotropy and temperature dependence of oxygen phonon modes in YBa2Cu3O6.95 . Phys. Rev. B 67, 014517 (2003).

    Article  ADS  Google Scholar 

  22. Bussmann-Holder, A. & Keller, H. Polaron formation as origin of unconventional isotope effects in cuprate superconductors. Eur. Phys. J. B 44, 487–490 (2005).

    Article  ADS  Google Scholar 

  23. Müller, K. A. in Treatise on High Temperature Superconductivity (ed. Schrieffer, J. R.) (in the press).

  24. Crespi, V. H. & Cohen, M. L. Anharmonic phonons and high-temperature superconductivity. Phys. Rev. 48, 398–406 (1993).

    Article  ADS  Google Scholar 

  25. Kulić, M. L. Interplay of electron–phonon interaction and strong correlations: the possible way to high-temperature superconductivity. Phys. Rep. 338, 1–264 (2000).

    Article  ADS  Google Scholar 

  26. Cappelluti, E. & Pietronero, L. Nonadiabatic superconductivity: The role of van Hove singularities. Phys. Rev. B 53, 932–944 (1996).

    Article  ADS  Google Scholar 

  27. Sakai, T., Poilblanc, D. & Scalapino, D. J. Hole pairing and phonon dynamics in generalized two-dimensional t−J Holstein Models. Phys. Rev. B 55, 8445–8451 (1997).

    Article  ADS  Google Scholar 

  28. Fu, H. C., Honerkamp, C. & Lee, D.-H. Renormalization group study of the electron–phonon interaction in high Tc cuprates. Preprint at <http://www.arxiv.org/cond-mat/0509072 v2 > (2005).

  29. Schuttler, H.-B. & Pao, C.-H. Isotope effect in d-wave superconductors. Phys. Rev. Lett. 75, 4504–4507 (1995).

    Article  ADS  Google Scholar 

  30. Song, J. & Annett, J. F. Electron–phonon coupling and d-wave superconductivity in the cuprates. Phys. Rev. B 51, 3840–3849 (1995).

    Article  ADS  Google Scholar 

  31. Zeyher, Z. & Zwicknagl, G. Superconductivity-induced phonon self-energy effects in high-Tc superconductors. Z. Phys. B 78, 175–190 (1990).

    Article  ADS  Google Scholar 

  32. Nicol, E. J., Jiang, C. & Carbotte, J. P. Effect of d-wave energy-gap symmetry on Raman shifts. Phys. Rev. B 47, 8131–8139 (1993).

    Article  ADS  Google Scholar 

  33. McElroy, K. et al. Atomic-scale sources and mechanism of nanometer scale electronic disorder in Bi2Sr2CaCu2O8+δ . Science 309, 1048–1052 (2005).

    Article  ADS  Google Scholar 

  34. Khasanov, R. et al. Site-selective oxygen isotope effect on the magnetic penetration depth in underdoped Y0.6Pr0.4Ba2Cu3O7−δ . Phys. Rev. B 68, 220506 (2003).

    Article  ADS  Google Scholar 

  35. Büchner, B., Breuer, M., Freimuth, A. & Kampf, A. P. Critical buckling for the disappearance of superconductivity in rare-earth-doped La2−xSrxCuO4 . Phys. Rev. Lett. 73, 1841–1844 (1994).

    Article  ADS  Google Scholar 

  36. Mahan, G. D. Reentrant superconductivity from the anharmonic electron–phonon interaction. Phys. Rev. B 56, 8322–8329 (1997).

    Article  ADS  Google Scholar 

  37. Weber, W. H., Peters, C. R. & Logothetis, E. M. Raman studies of lanthanum cuprate superconductors. L. Opt. Soc. Am. B 6, 455–464 (1989).

    Article  ADS  Google Scholar 

  38. Piazza, F. et al. Study of atomic motions in EuBa2Cu3O7−δ using Mössbauer and EXAFS spectroscopies. J. Supercond. 14, 675–681 (2001).

    Article  ADS  Google Scholar 

  39. Sugai, S. et al. Carrier-density-dependent momentum shift of the coherent peak and the LO phonon mode in p-type high-Tc superconductors. Phys. Rev. B 68, 184504 (2003).

    Article  ADS  Google Scholar 

  40. Read, N. & Newns, D. M. On the solution to the Coqblin–Schrieffer hamiltonian by the large-N expansion technique. J. Phys. C 16, 3273–3295 (1983).

    Article  ADS  Google Scholar 

  41. Coleman, S. Aspects of Symmetry (Cambridge Univ. Press, New York, 1985).

    Book  Google Scholar 

  42. Lavagna, M., Millis, A. J. & Lee, P. A. d-wave superconductivity in the large-degeneracy limit of the Anderson lattice. Phys. Rev. Lett. 58, 266–269 (1987).

    Article  ADS  Google Scholar 

  43. Serene, J. W. & Hess, D. W. Quasiparticle properties of the two-dimensional Hubbard model in a propagator-renormalized fluctuation-exchange approximation. Phys. Rev. B 44, 3391–3394 (1991).

    Article  ADS  Google Scholar 

  44. Presland, M. R., Tallon, J. L., Buckley, R. G., Liu, R. S. & Flower, N. E. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Physica C 176, 95–105 (1991).

    Article  ADS  Google Scholar 

  45. Grüner, G. The dynamics of charge density waves. Rev. Mod. Phys. 60, 1129–1138 (1988).

    Article  ADS  Google Scholar 

  46. Homes, C. C. et al. Scaling of the superfluid density in high-temperature superconductors. Nature 430, 539 (2004).

    Article  ADS  Google Scholar 

  47. Tallon, J. L. et al. Scaling relation for the superfluid density of cuprate superconductors: Origins and limits. Phys. Rev. B 73, 180504(R) (2006).

    Article  ADS  Google Scholar 

  48. Ebner, C. & Stroud, D. Superfluid density, penetration depth, and integrated fluctuation conductivity of a model granular superconductor. Phys. Rev. B 28, 5053 (1983).

    Article  ADS  Google Scholar 

  49. Shibauchi, T., Krusin-Elbaum, L., Li, M., Maley, M. P. & Kes, P. H. Closing the pseudogap by Zeeman splitting in Bi2Sr2CaCu2O8+y at high magnetic fields. Phys. Rev. Lett. 86, 5763–5767 (2001).

    Article  ADS  Google Scholar 

  50. Machida, K., Koyama, T. & Matsubara, T. Theory of charge-density-wave superconductors. Phys. Rev. B 23, 99–105 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. M. Newns or C. C. Tsuei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newns, D., Tsuei, C. Fluctuating Cu–O–Cu bond model of high-temperature superconductivity. Nature Phys 3, 184–191 (2007). https://doi.org/10.1038/nphys542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing