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Two new vortex liquids

PHILIP W. ANDERSON
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
e-mail: pwa@pupgg.princeton.edu

Published online: 18 February 2007; doi:10.1038/nphys539

In 1967, Reatto and Chester1 proposed that solid helium-4
might exhibit superfluidity, and in 1970, Leggett2 suggested what
was thought to be a definitive experimental test: to find non-
classical rotational inertia in a toroidal sample. More than three
decades later, the observation by Kim and Chan3,4 of exactly
that effect generated great interest and has been repeated and
confirmed by a number of groups. However, many attempts
to find actual superflow in truly solid samples have failed.
Here, I draw an analogy with a second example of anomalous
response to vorticity in a dissipative fluid, the vortex liquid phase
in the pseudogap region of high-temperature superconductors,
and propose that the solid helium experiments have been
mischaracterized: what is observed is not supersolidity but
an incompressible vortex liquid. This state is distinct from a
conventional liquid in that its properties are dominated by
conserved supercurrents flowing around a thermally fluctuating
tangle of vortices.

In the past two years, we have been confronted with puzzling
data involving ‘non-classical’ responses to vorticity in two very
different physical systems. One has garnered (justifiably) a great
deal of attention: the observations, by Kim and Chan4, of NCRI
(Leggett’s term2: non-classical rotational inertia) in samples of
solid He-4.

Attention for the second system has been confined mostly
to specialists in the field of high transition-temperature, Tc,
superconductivity. In these superconductors there is a phase for
T > Tc, in which anomalous properties persist up to quite high
temperatures—it is called the ‘pseudogap’ phase. It has recently
been shown5,6 that in the lower portion of this phase, the in-plane
diamagnetic susceptibility is large and nonlinear up to a certain
fairly definite ‘onset’ field and temperature, somewhat lower
than the crossover, T∗, that bounds the pseudogap region. That
this behaviour is due to vortex-like currents is demonstrated
by the earlier observation7,8, of a large and nonlinear Nernst
effect, continuous with that observed in the high-field flux-flow
region, and ascribable to viscous flow of vortices along a thermal
gradient. Above Tc, the susceptibility and Nernst signal track each
other closely.

The moment of inertia can be thought of as a
rotational susceptibility

I = ∂M

∂Ω
,

where M is angular momentum and Ω is angular velocity. Thus,
nonlinear susceptibility and NCRI are similar phenomena. The
latter could be characterized as nonlinear rotational susceptibility
rather than as NCRI. The two experimental examples can be shown
to be similar even in functional form if we note that M/B often

varies as ln B over an intermediate range of the magnetic field, B,
whereas δI falls off linearly with ln Ω at larger Ω (ref. 4).

I believe that in both of these phases the dynamics are
controlled by thermally excited, fluctuating, quantized vortex
tangles: they are vortex liquids. The concept of vortex liquid is
not a new one: it is implicit in the Kosterlitz–Thouless9 theory
of the superfluid phase transition in two dimensions, where the
superfluid phase transition occurs via the thermal proliferation
of vortices. The melting of the Abrikosov lattice of flux lines is
known to be the transition mechanism at higher fields in high-
Tc superconductors10. The vortex liquid is a relatively familiar
concept in this high field range, and there have been suggestions
that it is a distinct phase11, but before our recent work there
has not been a very clear characterization of it or its dynamics.
I am suggesting that this entire region in the field-temperature
phase diagram is not just some consequence of either gaussian
superconducting fluctuations in a basically normal fluid, or of
a melted array of Abrikosov vortices. This may be formally
characterized by its non-analytic response to magnetic field, a
response that vanishes outside of a definite region of temperature
and field. Nguyen and Sudbo12 have also suggested the existence
of a distinct vortex liquid phase above the superfluid transition in
their simulations, but have not discussed dynamics. (See also Franz
and Tesanovic13.)

The transition temperature, Tc, for a superfluid is normally
described in terms of the x–y model, where the order parameter
is a phase φ and the effective hamiltonian is proportional to
(∇φ)2. The theory of the superfluid transition for the Bose liquid
has been recast in vortex form by Williams14, following earlier
suggestions by Onsager, Feynman and Elser. This seems also to be
the case for the high-Tc superconductors, empirically15 and now
theoretically16; the energy gap persists for a considerable range
above Tc, unlike conventional superconductors, and Tc is caused
by phase disordering. There is good empirical reason to believe11

that quasiparticle currents are dominated by the supercurrents at
least near Tc.

The x–y model, however, does not really describe the
disordered superfluid, because the order parameter is not a simple
classical vector but a quantum dynamical variable. There are
supercurrents whose velocity is given by

v = h̄

m
∇φ and current by J = ρsv, (1)

where m is the appropriate boson mass.
The crucial concept here is that there is a finite superfluid

density, ρs, which has an equilibrium value at any temperature
below the onset and at any field (for superconductors) below Hc2,

160 nature physics VOL 3 MARCH 2007 www.nature.com/naturephysics



LETTERS

the field at which vortex cores overlap and superconductivity is
destroyed. Hence, there is a term in the free energy

F = constant× (ρs −ρs0)
2. (2)

This ensures that the superfluid is approximately incompressible
for the relatively slow motions and longer space scales of the phase
fluctuations caused by vortices, so that (equation (1)),

∇ · Js = 0 = ∇2φ,

is coarse-grained over such scales. (Our ρs is not the conventional
macroscopic quantity giving the penetration depth, which is its
average over phase fluctuations, but is defined microscopically by
equation (1).)

This means that the state of the vortex fluid at any given
instant can be completely characterized by an array of singular
lines (vortices) around which the phase rotates by 2π. In the
homogeneous fluid or in the absence of strong pinning forces, these
vortex lines will move with the local velocity of the fluid due to
all of the other lines. I have been able17 to give a reasonably good
quantitative account of the Nernst observations on the pseudogap
phase of high-Tc superconductors, as well as of the resistivity in this
phase, using this vortex fluid picture. The essential point of these
transport phenomena is that dissipation is caused by the thermal
fluctuations of the supercurrents with a mean correlation time
τ ∼= h/kT , when T is well above Tc. (k is Boltzmann’s constant.)
The observations of ‘Fermi arcs’ by Campuzano and coworkers18 in
the pseudogap phase also receives a simple explanation in terms of
the time-fluctuating phase of the energy gap.

The key property of the vortex fluid phase is that as long as
the phase φ is definable and satisfies the constraint (equation (2)),
the extra vortices caused by the overall rotation of the sample, or
equivalently by an external magnetic field in the superconductor
case, cannot be screened away by polarization of the background
thermal fluid of vortices. For each quantum unit of flux or
circulation, there will be exactly one extra quantized vortex running
entirely through the sample with its extra rotation by 2π along any
circumscribing path, and therefore it will have its extra velocity
implied by equation (1),

vθ = h̄/mr. (3)

Each of these extra vortices has a self-energy given by
integrating the extra kinetic energy ρs v2/2 over the sample:

U ∝ ρs ln[R2/a2] = ρs ln[1/nv a2].

a is the vortex core size, presumably microscopic in the cases of
interest. The extra currents blend in to the overall rotation at the
scale of the distance between them, so there is an upper limit, R,
for the logarithmic integral; what is special about the vortex liquid
are the fluctuations in current caused by the fact that the vorticity is
quantized. This causes the non-classical diamagnetism or rotational
inertia. I believe that the condition of finite, conserved superfluid
density is likely to be equivalent to that in ref. 12, that the line
tension of vortex lines be finite.

Below Tc, the extra currents and velocities implied by
equation (3) are progressively screened out as T → Tc by the effects
of thermally excited vortex pairs—but, significantly, not to zero at
Tc, as in ref. 9. But above Tc, interactions between vortices are less
important than entropic considerations, and the screening effect
disappears: the vortices are randomly distributed.

Huse proposal
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Figure 1 Suggested explanation for dissipation peak. The rate of flow of vortices
across the sample will increase with temperature and decrease with He-3
concentration (black lines). Where this rate coincides with torsion oscillator
frequency (Ω ; green line) there will be a peak of dissipation.

The evidence for vortex fluid behaviour in solid He is even
less accepted and the following description of the situation is
somewhat conjectural. Huse and coworkers19 first pointed out that
the observations of Kim and Chan in refs 3,4 seem not to be what
is expected of a true superfluid but rather represent the dispersion
at a dissipation peak above the superfluid Tc, in analogy with the
observations of Kosterlitz–Thouless behaviour in He films20. We
proposed, and supported with experimental evidence, the idea that
solid He is an incommensurate three-dimensional density wave
rather than a true solid, with the actual helium capable of flowing
as a fluid through this density wave. In the presumed ground state,
this flow is that of a superfluid, but above Tc (which we estimate is
<0.02 K) it is a vortex fluid. This flow has a superfluid density

ρs = nh̄2
/2M, with M ≈ 102MHe

and velocity

vs = h̄∇φ/M .

The dynamical variable that characterizes the flow of the helium
relative to the lattice is the phase φ(r), which in turn is entirely
described by a network of vortex lines plus uniform motion. There
is only one set of Goldstone bosons, the phonons of the lattice,
and actual compressional modes of the relative motion with respect
to the lattice are at high frequency. When the lattice is in uniform
motion without the fluid, it carries only (1−MHe/M) of the mass.
For the entire solid to rotate rigidly, it must contain a number of
vortices equal to ΩMHe/h per unit area.

My suggestion is that the torsional vibration frequency 1,000 Hz
matches the rate at which vortices can move into and out of the
sample precisely at the temperature of maximum dissipation (see
Fig. 1). At lower temperatures, the rate of vortex motion is too slow
and the moment of inertia is only that of the lattice, and hence is
reduced by the ratio 1− MHe/M . At higher temperatures, vortices
flow in easily and the moment of inertia is normal.

Estimating the rate of motion of vortices in the pure solid using
the methods of ref. 17 seems to result in too rapid motion. He-3
impurities should act as quite efficient pinning centres, and this is
the most likely mechanism for the observations by Kim and Chan3,4

that the effects are very He-3 dependent, and disappear when He-3
is completely absent. It may be that the vortices would have to carry
the He-3 along with them, which would slow their motion severely.
Structural defects, if present, would be less effective in pinning
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vortices, although the fact that annealing affects the results suggests
some role in slowing vortex motion.

The close analogy between the Nernst effect and the Chan
effect is striking. In both cases, a current of vortices is driven,
in the one case by the thermal gradient and in the other by the
alternating torsional velocity. What is actually measured is the
viscous resistance to this flow, and the size of the response is
proportional to the logarithmic energy of the vortices. The number
of driven vortices is enormously different, of course: a small integer
in Chan’s case, of order 109 in the Nernst effect.

Structural defects are often suggested as an ‘explanation’ of
the Chan experiments. The coincidence that the magnitude of
the ‘critical’ velocity corresponds to a small number of vorticity
quanta argues against this; also, it is hard for me to understand
why structural defects should respond specifically to rotation,
mimicking the effects of vortices, and not, for instance, to steady
pressures such as have been applied in various unsuccessful
experiments. It is interesting to note that superflow along a network
of dislocation lines or grain boundaries might well obey the above
equations for a vortex liquid, although I find this alternative
explanation for the observations less plausible. An experiment by
Rittner and Reppy21 is adduced as evidence for the defect theory,
but the experimental conditions of Rittner and Reppy’s experiment
differ substantively from Chan’s; particularly, with a higher velocity
and a larger, cubic cell, Rittner and Reppy’s sample has orders of
magnitude more vortices in it.

Clearly the crucial experiment for our hypothesis is to change
the torsional vibration frequency, holding all other variables
constant. This has not been done. It would seem to be urgent to
do so, because no other hypothesis yet proposed is consistent with
any appreciable fraction of the data.

In summary, I am proposing that the extensive observations of
Ong and Wang and coworkers6–8 on the pseudogap phase of cuprate
superconductors constitute the discovery of the vortex fluid phase
conjectured by Feigel’man11 and by Nguyen and Sudbo12; and I
conjecture that the observation of NCRI in quantum solids by Kim
and Chan3,4 constitutes a rediscovery of this phase in a uniquely
interesting system.
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