Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing rare physical trajectories with Lyapunov weighted dynamics

Abstract

In nonlinear dynamical systems, atypical trajectories often play an important role. For instance, resonances and separatrices determine the fate of planetary systems, and localized objects such as solitons and breathers provide mechanisms of energy transport in systems such as Bose–Einstein condensates and biological molecules. Unfortunately, most of the numerical methods to locate these ‘rare’ trajectories are confined to low-dimensional or toy models, whereas the realms of statistical physics, chemical reactions or astronomy are still hard to reach. Here we implement an efficient method that enables us to work in higher dimensions by selecting trajectories with unusual chaoticity. As an example, we study the Fermi–Pasta–Ulam nonlinear chain in equilibrium and show that the algorithm rapidly singles out the soliton solutions when searching for trajectories with low levels of chaoticity, and chaotic breathers in the opposite situation. We expect the scheme to have natural applications in celestial mechanics and turbulence, where it can readily be combined with existing numerical methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Convergence towards the separatrix.
Figure 2: The standard map.
Figure 3: Arnol’d web and convergence.
Figure 4: Finding resonances in higher dimensions.
Figure 5: Finding a chaotic breather.
Figure 6: Finding solitons.

Similar content being viewed by others

References

  1. Laskar, J. A numerical experiment on the chaotic behaviour of the Solar System. Nature 338, 237–238 (1989).

    Article  ADS  Google Scholar 

  2. Murray, N. & Holman, M. The origin of chaos in the outer solar system. Science 283, 1877–1881 (1999).

    Article  ADS  Google Scholar 

  3. Murray, N. & Holman, M. The role of chaotic resonances in the Solar System. Nature 410, 773–779 (2001).

    Article  ADS  Google Scholar 

  4. Cretegny, T., Dauxois, T., Ruffo, S. & Torcini, A. Localization and equipartition of energy in the beta-FPU chain: Chaotic breathers. Physica D 121, 109–126 (1998).

    Article  ADS  Google Scholar 

  5. Trombettoni, A. & Smerzi, A. Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (2001).

    Article  ADS  Google Scholar 

  6. Grassberger, P., Badii, R. & Politi, A. Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors. J. Stat. Phys. 51, 135–178 (1988).

    Article  ADS  Google Scholar 

  7. Benzi, R., Paladin, G., Parisi, G. & Vulpiani, A. Characterisation of intermittency in chaotic systems. J. Phys. A: Math. Gen. 18, 2157–2165 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  8. Cvitanovic, P. & Vattay, G. Entire Fredholm Determinants for evaluation of semiclassical and thermodynamical spectra. Phys. Rev. Lett. 71, 4138–4141 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  9. Tailleur, J., Tanase-Nicola, S. & Kurchan, J. Kramers equation and supersymmetry. J. Stat. Phys. 122, 557–595 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  10. Bohr, T. & Rand, D. The entropy function for characteristic exponents. Physica D 25, 387–398 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  11. Gaspard, P. & Dorfman, J. R. Chaotic scattering theory, thermodynamic formalism, and transport coefficients. Phys. Rev. E 52, 3525–3552 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  12. Ott, E. Chaos in Dynamical Systems (Cambridge Univ. Press, Cambridge, 1993).

    MATH  Google Scholar 

  13. Cartwright, J. H. E., Magnasco, M. O., Piro, O. & Tuval, I. Bailout embeddings and neutrally Buoyant particles in three-dimensional flows. Phys. Rev. Lett. 89, 264501 (2002).

    Article  ADS  Google Scholar 

  14. Lichtenberg, A. L. & Lieberman, M. A. Regular and Chaotic Dynamics (Springer, Berlin, 1992).

    Book  Google Scholar 

  15. Arnol’d, V. I. Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR 156, 9 (1964).

    MathSciNet  Google Scholar 

  16. Robin, D., Steire, C., Laskar, J. & Nadolski, L. Global dynamics of the advanced light source revealed through experimental frequency map analysis. Phys. Rev. Lett. 85, 558–561 (2000).

    Article  ADS  Google Scholar 

  17. Laskar, J. Frequency-analysis for multidimensional systems—global dynamics and diffusion. Physica D 67, 257–281 (1993).

    ADS  MathSciNet  MATH  Google Scholar 

  18. Froeschle, C., Guzzo, M. & Legga, E. Graphical evolution of the Arnold web: From order to chaos. Science 289, 2108–2110 (2000).

    Article  ADS  Google Scholar 

  19. Laskar, J. Large-scale chaos in the solar-system. Astron. Astrophys. 287, L9–L12 (1994).

    ADS  Google Scholar 

  20. Bolhuis, P. G., Chandler, D., Dellago, C. & Geissler, P. L. Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Galavotti, J. Laskar, S. Ruffo and S. Tanase-Nicola for very useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Tailleur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tailleur, J., Kurchan, J. Probing rare physical trajectories with Lyapunov weighted dynamics. Nature Phys 3, 203–207 (2007). https://doi.org/10.1038/nphys515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing