Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1−xCax)RuO3

Abstract

Quantum phase transitions (QPTs) at zero temperature are generally studied by means of pressure or composition tuning. Volume-integrated probes such as neutron and magnetization measurements, as well as pressure uncertainties in NMR studies using powder specimens, however, have limited the characterization of magnetism and detection of discontinuous changes at QPTs. Overcoming these limitations, we carried out muon spin relaxation measurements that have a unique sensitivity to volume fractions of magnetically ordered and paramagnetic regions, and studied QPTs from itinerant helimagnet or ferromagnet to paramagnet transitions in MnSi (single crystal; varying pressure) and (Sr1−xCax)RuO3 (ceramic specimens; varying x). Our results provide the first clear evidence that both cases are associated with phase separation and suppression of dynamic critical behaviour, reveal slow dynamics of the ‘partial order’ diffuse spin correlations in MnSi above the critical pressure and suggest the possibility that a majority of QPTs in correlated electron systems involve first-order transitions and/or phase separation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature–pressure phase diagram and envelope of μSR oscillation spectra of MnSi.
Figure 2: μSR results on the volume fraction, relaxation rate and spin precession frequency in MnSi.
Figure 3: ZF μSR and magnetization results in (Sr1−xCax)RuO3.
Figure 4: Free-energy profile for the first- and second-order phase transitions.

Similar content being viewed by others

References

  1. Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997).

    Article  ADS  Google Scholar 

  2. Pfleiderer, C. et al. Partial order in the non-Fermi-liquid phase of MnSi. Nature 427, 227–231 (2004).

    Article  ADS  Google Scholar 

  3. Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2 . Nature 412, 58–61 (2001).

    Article  ADS  Google Scholar 

  4. Saxena, S. S. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000).

    Article  ADS  Google Scholar 

  5. Ishikawa, Y., Shirane, G., Tarvin, J. A. & Kohgi, M. Magnetic excitations in the weak itinerant ferromagnet MnSi. Phys. Rev. B16, 4956–4970 (1977).

    Article  ADS  Google Scholar 

  6. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism vol. 56 (Springer Series in Solid State Science, Springer, Heidelberg, 1985).

    Book  Google Scholar 

  7. Thessieu, C., Kitaoka, Y. & Asayama, K. Magnetic quantum phase transition in MnSi. Physica B 259–261, 847–848 (1999).

    Article  ADS  Google Scholar 

  8. Yu, W. et al. Phase inhomogeneity of the itinerant ferromagnet MnSi at high pressures. Phys. Rev. Lett. 92, 086403 (2004).

    Article  ADS  Google Scholar 

  9. Lee, S. L., Kilcoyne, S. H. & Cywinski, R. (eds) Muon Science: Muons in Physics, Chemistry and Materials (Inst. of Physics Publishing, Bristol, 1999).

  10. Savici, A. T. et al. Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2CuO4.11 and La1.88Sr0.12CuO4 . Phys. Rev. B 66, 014524 (2002).

    Article  ADS  Google Scholar 

  11. Hayano, R. S. et al. Observation of the T/(TTc) divergence of the μ+ spin-lattice relaxation rate in MnSi near Tc . Phys. Rev. Lett. 41, 1743–1746 (1978).

    Article  ADS  Google Scholar 

  12. Kadono, R., Matsuzaki, T., Yamazaki, T., Kreitzman, S. R. & Brewer, J. H. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation. Phys. Rev. B 42, 6515–6522 (1990).

    Article  ADS  Google Scholar 

  13. Gat-Malureanu, I. M. et al. Field dependence of the muon spin relaxation rate in MnSi. Phys. Rev. Lett. 90, 157201 (2003).

    Article  ADS  Google Scholar 

  14. Kiyama, T., Yoshimura, K., Kosuge, K., Mitamura, H. & Goto, T. High-field magnetization of Sr1−xCaxRuO3 . J. Phys. Soc. Japan 68, 3372–3376 (1999).

    Article  ADS  Google Scholar 

  15. Yoshimura, K. et al. 17O NMR observation of universal behavior of ferromagnetic spin fluctuations in the itinerant magnetic system Sr1−xCaxRuO3 . Phys. Rev. Lett. 83, 4397–4400 (1999).

    Article  ADS  Google Scholar 

  16. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  ADS  Google Scholar 

  17. Belitz, D., Kirkpatrick, T. R. & Vojta, T. First order transitions and multicritical points in weak itinerant ferromagnets. Phys. Rev. Lett. 82, 4707–4710 (1999).

    Article  ADS  Google Scholar 

  18. Belitz, D., Kirkpatrick, T. R. & Rollbühler, J. Tricritical behavior in itinerant quantum ferromagnets. Phys. Rev. Lett. 94, 247205 (2005).

    Article  ADS  Google Scholar 

  19. Binz, B., Vishwanath, A. & Aji, V. Theory of the helical spin crystal: A candidate for the partially ordered state of MnSi. Phys. Rev. Lett. 96, 207202 (2006).

    Article  ADS  Google Scholar 

  20. Tewari, S., Belitz, D. & Kirkpatrick, T. R. Blue quantum fog: Chiral condensation in quantum helimagnets. Phys. Rev. Lett. 96, 047207 (2006).

    Article  ADS  Google Scholar 

  21. Rössler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature (2006) (in the press) <http://www.arxiv.org/cond-mat/0603103>.

  22. Schmalian, J. & Turlakov, M. Quantum phase transitions of magnetic rotons. Phys. Rev. Lett. 93, 036405 (2004).

    Article  ADS  Google Scholar 

  23. Dietrich, O. W., Graf, E. H., Huang, C. H. & Passell, L. Neutron scattering by rotons in liquid helium. Phys. Rev. A 5, 1377–1391 (1972).

    Article  ADS  Google Scholar 

  24. Uemura, Y. J. Condensation, excitation, pairing, and superfluid density in high-Tc superconductors: Magnetic resonance mode as a roton analogue and a possible spin-mediated pairing. J. Phys. Condens. Matter 16, S4515–S4540 (2004).

    Article  ADS  Google Scholar 

  25. Uemura, Y. J. Twin spin/charge roton mode and superfluid density: Primary determining factors of Tc in high-Tc superconductors observed by neutron, ARPES, and MuSR. Physica B 374/375, 1–8 (2006).

    Article  ADS  Google Scholar 

  26. Bak, P. & Jensen, M. H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C: Solid State Phys. 13, L881–L885 (1980).

    Article  ADS  Google Scholar 

  27. Pfleiderer, C. & Huxley, A. D. Pressure dependence of the magnetization in the ferromagnetic superconductor UGe2 . Phys. Rev. Lett. 89, 147005 (2002).

    Article  ADS  Google Scholar 

  28. Harada, A. et al. Cooperative phenomenon of ferromagnetism and unconventional superconductivity in UGe2: A 73Ge-NQR study under pressure. J. Phys. Soc. Japan 74, 2675–2678 (2005).

    Article  ADS  Google Scholar 

  29. Uhlarz, M., Pfleiderer, C. & Hayden, S. M. Quantum phase transitions in the itinerant ferromagnet ZrZn2 . Phys. Rev. Lett. 93, 256404 (2004).

    Article  ADS  Google Scholar 

  30. Luke, G. M. et al. Competition between magnetic order and superconductivity in CeCu2.2Si2 . Phys. Rev. Lett. 73, 1853–1856 (1994).

    Article  ADS  Google Scholar 

  31. Matsuda, K., Kohori, Y., Kohara, T., Kuwahara, K. & Amitsuka, H. Spatially inhomogeneous development of antiferromagnetism in URu2Si2: Evidence from 29Si NMR under pressure. Phys. Rev. Lett. 87, 087203 (2001).

    Article  ADS  Google Scholar 

  32. Luke, G. M. et al. Muon spin relaxation in heavy fermion systems. Hyperfine Interact. 85, 397–409 (1994).

    Article  ADS  Google Scholar 

  33. Amitsuka, H. et al. Hidden order and weak antiferromagnetism in URu2Si2 . Physica B 312/313, 390–396 (2002).

    Article  ADS  Google Scholar 

  34. Kitaoka, Y., Kawasaki, S., Mito, T. & Kawasaki, Y. Unconventional superconductivity in heavy fermion systems. J. Phys. Soc. Japan 74, 186–199 (2005).

    Article  ADS  Google Scholar 

  35. Nachumi, B. et al. Muon spin relaxation studies of Zn-substitution effects in high-Tc cuprate superconductors. Phys. Rev. Lett. 77, 5421–5424 (1996).

    Article  ADS  Google Scholar 

  36. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000).

    Article  ADS  Google Scholar 

  37. Kojima, K. M. et al. Superfluid density and volume fraction of static magnetism in stripe-stabilized La1.85−yCuySr0.15CuO4 . Physica B 326, 316–320 (2003).

    Article  ADS  Google Scholar 

  38. Mohottala, H. E. et al. Phase separation in superoxygenated La2−xSrxCuO4+y . Nature Mater. 5, 377–382 (2006).

    Article  ADS  Google Scholar 

  39. Uemura, Y. J. et al. Magnetic field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime. Nature 364, 605–607 (1993).

    Article  ADS  Google Scholar 

  40. Slezak, J. A. Scanning tunneling spectroscopy studies of Bi2Sr2CaCu2O8+x from the strongly underdoped to strongly overdoped regime. in APS March Meeting, Baltimore, 2006, online abstract in <http://meetings.aps.org/Meeting/MAR06/Event/42945>.

Download references

Acknowledgements

We acknowledge financial support from NSF DMR-05-02706 (Material World Network, Inter-American Materials Collaboration program) at Columbia and Kentucky, NSF DMR-01-02752 and CHE-01-11752 at Columbia, NSERC and CIAR (Canada) at McMaster, Brazilian grant CIAM-CNPq 49.2674/2004-3 at CBPF and CIAM-CONICET project 509/20-04-05 at CAB Bariloche, Argentina; technical support from S.R. Kreitzman and K. Satoh and scientific discussions with B. Binz, M. Continentino, S.R. Julian and A.J. Millis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Uemura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, Y., Goko, T., Gat-Malureanu, I. et al. Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr1−xCax)RuO3. Nature Phys 3, 29–35 (2007). https://doi.org/10.1038/nphys488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing