Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dispersive superfluid-like shock waves in nonlinear optics

Abstract

In most classical fluids, shock waves are strongly dissipative, their energy being quickly lost through viscous damping. But in systems such as cold plasmas, superfluids and Bose–Einstein condensates, where viscosity is negligible or non-existent, a fundamentally different type of shock wave can emerge whose behaviour is dominated by dispersion rather than dissipation. Dispersive shock waves are difficult to study experimentally, and analytical solutions to the equations that govern them have only been found in one dimension (1D). By exploiting a well-known, but little appreciated, correspondence between the behaviour of superfluids and nonlinear optical materials, we demonstrate an all-optical experimental platform for studying the dynamics of dispersive shock waves. This enables us to observe the propagation and nonlinear response of dispersive shock waves, including the interaction of colliding shock waves, in 1D and 2D. Our system offers a versatile and more accessible means for exploring superfluid-like and related dispersive phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Experimental pictures of superfluid-like optical spatial shock waves.
Figure 3: Shock length, measured from the centreline to the end of oscillations, with respect to peak-to-background intensity ratio.
Figure 4: Experimental output pictures versus initial separation distance between two adjacent shocks.
Figure 6: Shock wave collisions.
Figure 5: Fourier power spectra of shock collisions versus initial separation distance.

Similar content being viewed by others

References

  1. Lenz, G., Meystre, P. & Wright, E. M. Nonlinear atom optics. Phys. Rev. Lett. 71, 3271–3274 (1993).

    Article  ADS  Google Scholar 

  2. Rolston, S. L. & Phillips, W. D. Nonlinear and quantum atom optics. Nature 416, 219–214 (2002).

    Article  ADS  Google Scholar 

  3. Anderson, B. & Meystre, P. Nonlinear atom optics. Contemp. Phys. 44, 473–483 (2003).

    Article  ADS  Google Scholar 

  4. Damski, B. Formation of shock waves in a Bose–Einstein condensate. Phys. Rev. A 69, 043610 (2004).

    Article  ADS  Google Scholar 

  5. Kamchatnov, A. M., Gammal, A. & Kraenkel, R. A. Dissipationless shock waves in Bose–Einstein condensates with repulsive interaction between atoms. Phys. Rev. A 69, 063605 (2004).

    Article  ADS  Google Scholar 

  6. Dutton, Z., Budde, M., Slowe, C. & Hau, L. V. Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate. Science 293, 663–668 (2001).

    Article  ADS  Google Scholar 

  7. Ginsberg, N. S., Brand, J. & Hau, L. V. Observation of hybrid soliton vortex-ring structures in Bose–Einstein condensates. Phys. Rev. Lett. 94, 040403 (2005).

    Article  ADS  Google Scholar 

  8. DeMartini, F., Townes, C. H., Gustafso, Tk & Kelley, P. L. Self-steepening of light pulses. Phys. Rev. 1, 312 (1967).

    Article  ADS  Google Scholar 

  9. Anderson, D. & Lisak, M. Non-linear asymmetric self-phase modulation and self-steepening of pulses in long optical-waveguides. Phys. Rev. A 27, 1393–1398 (1983).

    Article  ADS  Google Scholar 

  10. Rothenberg, J. E. & Grischkowsky, D. Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. Phys. Rev. Lett. 62, 531 (1988).

    Article  ADS  Google Scholar 

  11. Kivshar, Y. S. Dark-soliton dynamics and shock-waves induced by the stimulated Raman effect in optical fibers. Phys. Rev. A 42, 1757–1761 (1990).

    Article  ADS  Google Scholar 

  12. Christodoulides, D. N. Fast and slow Raman shock-wave domains in nonlinear media. Opt. Commun. 86, 431 (1991).

    Article  ADS  Google Scholar 

  13. Kivshar, Y. S. & Malomed, B. A. Raman-induced optical shocks in nonlinear fibers. Opt. Lett. 18, 485–487 (1993).

    Article  ADS  Google Scholar 

  14. Kodama, Y. & Wabnitz, S. Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. Opt. Lett. 20, 2291 (1995).

    Article  ADS  Google Scholar 

  15. Forest, M. G. & McLaughlin, K. T. R. Onset of oscillations in nonsoliton pulses in nonlinear dispersive fibers. J. Nonlinear Sci. 8, 43–62 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  16. Forest, M. G., Kutz, J. N. & McLaughlin, K. R. T. Nonsoliton pulse evolution in normally dispersive fibers. J. Opt. Soc. Am. B 16, 1856–1862 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. Ginzburg, V. L. & Landau, L. D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950).

    Google Scholar 

  18. Ginzburg, V. L. & Pitaevskii, L. P. On the theory of superfluidity. Zh. Eksp. Teor. Fiz. 34, 1240.

  19. Pitaevskii, L. P. Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz. 40, 646 (1961).

    Google Scholar 

  20. Gross, E. P. Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454 (1961).

    Article  MathSciNet  Google Scholar 

  21. Madelung, E. Quantetheorie in hydrodynamischer form. Z. Phys. 40, 322 (1927).

    Article  ADS  Google Scholar 

  22. Akhmanov, S. A., Khoklov, R. V. & Sukhorukov, A. P. in Laser Handbook (eds Arecchi, F. T., Schultz-DuBois, E. O. & Stitch, M. L.) 115 (North-Holland, Amsterdam, 1972).

    Google Scholar 

  23. Roberts, P. H. & Berloff, N. G. in Quantized Vortex Dynamics and Superfluid Turbulence (eds Barenghi, C. F., Donnely, R. J. & Vinen, W. F.) 235 (Springer, Berlin, 2001).

    Book  Google Scholar 

  24. Whitham, G. B. Linear and Nonlinear Waves xvi, 636 (Wiley, New York, 1974).

    MATH  Google Scholar 

  25. Burgers, J. M. The Nonlinear Diffusion Equation (Reidel, Boston, 1974).

    Book  Google Scholar 

  26. Fleischer, J. & Diamond, P. H. Burgers’ turbulence with self-consistently evolved pressure. Phys. Rev. E 61, 3912–3925 (2000).

    Article  ADS  Google Scholar 

  27. Gurevich, A. V. & Krylov, A. L. Nondissipative shock-waves in media with positive dispersion. Zh. Eksp. Teor. Fiz. 92, 1684–1699 (1987).

    ADS  Google Scholar 

  28. El, G. A. & Krylov, A. L. General-solution of the Cauchy-problem for the defocusing NLS equation in the Whitham limit. Phys. Lett. A 203, 77–82 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  29. Hoefer, M. A. et al. Dispersive and classical shock waves in Bose–Einstein condensates and gas dynamics. Phys. Rev. A 74, 023623 (2006).

    Article  ADS  Google Scholar 

  30. Kulikov, I. & Zak, M. Shock waves in a Bose–Einstein condensate. Phys. Rev. A 67, 063605 (2003).

    Article  ADS  Google Scholar 

  31. Sagdeev, R. Z. The fine structure of a shock-wave front propagated across a magnetic field in a rarefied plasma. Sov. Phys.—Tech. Phys. 6, 867–871 (1962).

    Google Scholar 

  32. Karpman, V. I. Structure of shock front propagating at an angle to a magnetic field in a low-density plasma. Sov. Phys.—Tech. Phys. 8, 715–719 (1964).

    Google Scholar 

  33. Washimi, H. & Taniuti, T. Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966).

    Article  ADS  Google Scholar 

  34. Taylor, R. J., Baker, D. R. & Ikezi, H. Observation of collisionless electrostatic shocks. Phys. Rev. Lett. 24, 206–209 (1970).

    Article  ADS  Google Scholar 

  35. Infeld, E. & Rowlands, G. Nonlinear Waves, Solitons, and Chaos 2nd edn, xiii, 391 (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  36. Segev, M., Valley, G. C., Crosignani, B., DiPorto, P. & Yariv, A. Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys. Rev. Lett. 73, 3211–3214 (1994).

    Article  ADS  Google Scholar 

  37. Christodoulides, D. N. & Carvalho, M. I. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12, 1628–1633 (1995).

    Article  ADS  Google Scholar 

  38. Segev, M., Ophir, Y. & Fischer, B. Photorefractive self-defocusing. Appl. Phys. Lett. 56, 1086–1088 (1990).

    Article  ADS  Google Scholar 

  39. Efremidis, N. K. et al. Two-dimensional optical lattice solitons. Phys. Rev. Lett. 91, 213906 (2003).

    Article  ADS  Google Scholar 

  40. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    Article  ADS  Google Scholar 

  41. Agrawal, G. P. Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–883 (1987).

    Article  ADS  Google Scholar 

  42. Deng, L. et al. Four-wave mixing with matter waves. Nature 398, 218–220 (1999).

    Article  ADS  Google Scholar 

  43. Cai, D., Majda, A. J., McLaughlin, D. W. & Tabak, E. G. Spectral bifurcations in dispersive wave turbulence. Proc. Natl Acad. Sci. USA 96, 14216–14221 (1999).

    Article  ADS  Google Scholar 

  44. Fuchssteiner, B. Mastersymmetries, higher-order time-dependent symmetries and conserved-densities of nonlinear evolution-equations. Prog. Theor. Phys. 70, 1508–1522 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  45. Berest, Y. Y. & Veselov, A. P. Huygens principle and integrability. Russ. Math. Surv. 49, 5–77 (1994).

    Article  MathSciNet  Google Scholar 

  46. Mamaev, A. V., Saffman, M. & Zozulya, A. A. Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices. Phys. Rev. Lett. 76, 2262–2265 (1996).

    Article  ADS  Google Scholar 

  47. Tikhonenko, V., Christou, J., LutherDavies, B. & Kivshar, Y. S. Observation of vortex solitons created by the instability of dark soliton stripes. Opt. Lett. 21, 1129–1131 (1996).

    Article  ADS  Google Scholar 

  48. Fleischer, J. W., Carmon, T., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003).

    Article  ADS  Google Scholar 

  49. Kartashov, Y. V., Egorov, A. A., Vysloukh, V. A. & Torner, L. Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media. J. Opt. B 6, S279–S287 (2004).

    Article  ADS  Google Scholar 

  50. Zheltikov, A. M. Let there be white light: supercontinuum generation by ultrashort laser pulses. Phys.—Usp. 49, 605–628 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. P. Haataja, C. B. Arnold and M. W. Warnock-Graham for useful discussions. This work was supported by the NSF and AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. Fleischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, W., Jia, S. & Fleischer, J. Dispersive superfluid-like shock waves in nonlinear optics. Nature Phys 3, 46–51 (2007). https://doi.org/10.1038/nphys486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing