Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval

Abstract

In recent years the use of high-order harmonic radiation to create and control events on attosecond timescales has grown at a phenomenal rate. With the use of carrier-envelope phase (CEP) stabilization and few-cycle laser systems it is possible to probe physical processes on unprecedented timescales. Here, we report the first experimental observation of high-harmonic emission at individual half-cycles of a laser pulse. We show that these half-cycle emissions are extremely sensitive to the CEP, providing a route to a new single-shot measurement technique of the CEP. We use this technique to measure the CEP of an 8.5 fs pulse at a centre wavelength of 800 nm with an accuracy of 20 as (1 as=1×10−18 s). With appropriate spatio-spectral filtering of the harmonic spectra, our calculations show that we can isolate emission from an individual half-cycle cutoff, which corresponds to a single isolated attosecond pulse of duration <300 as.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origin of HCOs.
Figure 2: Theoretical (left) and experimental (right) spatially resolved high-harmonic spectra.
Figure 3: Tracking HCOs in high-harmonic spectra.
Figure 4: Experimental and theoretical positions of HCOs versus CEP.
Figure 5: Retrieval of absolute CEP.
Figure 6: Effect of spatio-spectral filtering on the temporal profile of emitted high harmonics.

Similar content being viewed by others

References

  1. Morgner, U. et al. Sub-two-cycle pulses from a kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999).

    Article  ADS  Google Scholar 

  2. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373–375 (2001).

    Article  ADS  Google Scholar 

  3. Nisoli, M. et al. A novel high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses. Appl. Phys. B 65, 189–196 (1997).

    Article  ADS  Google Scholar 

  4. Sartania, S. et al. Generation of o.1-tw 5-fs optical pulses at a 1-khz repetition rate. Opt. Lett. 22, 1562–1564 (1997).

    Article  ADS  Google Scholar 

  5. Hauri, C. P. et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79, 673–677 (2004).

    Article  ADS  Google Scholar 

  6. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  7. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  8. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article  ADS  Google Scholar 

  9. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  10. Niikura, H. et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

    Article  ADS  Google Scholar 

  11. de Bohan, A., Antoine, P., Milosevic, D. B. & Piraux, B. Phase-dependent harmonic emission with ultrashort laser pulses. Phys. Rev. Lett. 81, 1837–1840 (1998).

    Article  ADS  Google Scholar 

  12. Nisoli, M. et al. Effects of carrier-envelope phase differences of few-optical-cycle light pulses in single-shot high-order-harmonic spectra. Phys. Rev. Lett. 91, 213905 (2003).

    Article  ADS  Google Scholar 

  13. Chipperfield, L. E., Gaier, L. N., Knight, P. L., Marangos, J. P. & Tisch, J. W. G. Conditions for the reliable production of attosecond pulses using ultra-short laser-generated high harmonics. J. Mod. Opt. 52, 243–260 (2005).

    Article  ADS  Google Scholar 

  14. Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002).

    Article  ADS  Google Scholar 

  15. Liu, X. et al. Nonsequential double ionization at the single-optical-cycle limit. Phys. Rev. Lett. 93, 263001 (2004).

    Article  ADS  Google Scholar 

  16. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    Article  ADS  Google Scholar 

  17. Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  18. Roos, P. A. et al. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Opt. Lett. 30, 735–737 (2005).

    Article  ADS  Google Scholar 

  19. Fortier, T. M. et al. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Phys. Rev. Lett. 92,(2004).

  20. Mehendale, M., Mitchell, S. A., Likforman, J. P., Villeneuve, D. M. & Corkum, P. B. Method for single-shot measurement of the carrier envelope phase of a few-cycle laser pulse. Opt. Lett. 25, 1672–1674 (2000).

    Article  ADS  Google Scholar 

  21. Kakehata, M., Kobayashi, Y., Takada, H. & Torizuka, K. Single-shot measurement of a carrier-envelope phase by use of a time-dependent polarization pulse. Opt. Lett. 27, 1247–1249 (2002).

    Article  ADS  Google Scholar 

  22. Dietrich, P., Krausz, F. & Corkum, P. B. Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett. 25, 16–18 (2000).

    Article  ADS  Google Scholar 

  23. Lemell, C., Tong, X. M., Krausz, F. & Burgdorfer, J. Electron emission from metal surfaces by ultrashort pulses: Determination of the carrier-envelope phase. Phys. Rev. Lett. 90, 076403 (2003).

    Article  ADS  Google Scholar 

  24. Apolonski, A. et al. Observation of light-phase-sensitive photoemission from a metal. Phys. Rev. Lett. 92, 073902 (2004).

    Article  ADS  Google Scholar 

  25. Kress, M. et al. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Phys. 2, 327–331 (2006).

    Article  ADS  Google Scholar 

  26. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  27. Yakovlev, V. S. & Scrinzi, A. High harmonic imaging of few-cycle laser pulses. Phys. Rev. Lett. 91, 153901 (2003).

    Article  ADS  Google Scholar 

  28. Chipperfield, L. E., Knight, P. L., Tisch, J. W. G. & Marangos, J. P. Tracking individual electron trajectories in a high harmonic spectrum. Opt. Commun. 264, 494–501 (2006).

    Article  ADS  Google Scholar 

  29. Salieres, P. et al. Feynman’s path-integral approach for intense-laser-atom interactions. Science 292, 902–905 (2001).

    Article  ADS  Google Scholar 

  30. Lindner, F. et al. Gouy phase shift for few-cycle laser pulses. Phys. Rev. Lett. 92, 113001 (2004).

    Article  ADS  Google Scholar 

  31. Zhou, Y. H., Jiang, H. B. & Gong, Q. H. The carrier-envelope phase of focused few-cycle laser pulses. Chin. Phys. Lett. 23, 110–112 (2006).

    Article  ADS  Google Scholar 

  32. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    Article  ADS  Google Scholar 

  33. Geissler, M. et al. Light propagation in field-ionizing media: Extreme nonlinear optics. Phys. Rev. Lett. 83, 2930–2933 (1999).

    Article  ADS  Google Scholar 

  34. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  35. Robinson, J. S. et al. A method for the generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fiber. Appl. Phys. B (2006) (in the press).

Download references

Acknowledgements

The authors would like to thank R. Smith for useful discussions and to acknowledge the technical contributions of P. Ruthven, A. Gregory and B. Ratnasekara. This work is supported by the United Kingdom Research Councils through a Basic Technology Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. G. Tisch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haworth, C., Chipperfield, L., Robinson, J. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nature Phys 3, 52–57 (2007). https://doi.org/10.1038/nphys463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing