Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strongly interacting polaritons in coupled arrays of cavities

Abstract

Observing quantum phenomena in strongly correlated many-particle systems is difficult because of the short length- and timescales involved. Exerting control over the state of individual elements within such a system is even more so, and represents a hurdle in the realization of quantum computing devices. Substantial progress has been achieved with arrays of Josephson junctions and cold atoms in optical lattices, where detailed control over collective properties is feasible, but addressing individual sites remains a challenge. Here we show that a system of polaritons held in an array of resonant optical cavities—which could be realized using photonic crystals or toroidal microresonators—can form a strongly interacting many-body system showing quantum phase transitions, where individual particles can be controlled and measured. The system also offers the possibility to generate attractive on-site potentials yielding highly entangled states and a phase with particles much more delocalized than in superfluids.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An array of cavities as described by our model.
Figure 2: Formation of polariton modes.
Figure 3: The dynamics of one polariton in three cavities compared with the dynamics of one particle in the effective three-site BH model.
Figure 4: The Mott-insulator-to-superfluid transition for three polaritons in three cavities compared with three particles in a three-site BH model.
Figure 5: For increasingly strong attractive on-site potentials, a highly entangled W𝒩 state with local particle fluctuations Fi=𝒩 − 1 is created.

References

  1. van der Zant, H. S. J., Fritschy, F. C., Elion, W. J., Geerligs, L. J. & Mooij, J. E. Field-induced superconductor-to-insulator transitions in Josephson-junction arrays. Phys. Rev. Lett. 69, 2971–2974 (1992).

    ADS  Article  Google Scholar 

  2. van Oudenaarden, A. & Mooij, J. E. One-dimensional Mott insulator formed by quantum vortices in Josephson junction arrays. Phys. Rev. Lett. 76, 4947–4950 (1996).

    ADS  Article  Google Scholar 

  3. Fisher, M. P. A., Grinstein, G. & Grivin, S. M. Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition. Phys. Rev. Lett. 64, 587–590 (1990).

    ADS  Article  Google Scholar 

  4. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    ADS  Article  Google Scholar 

  5. Bruder, C., Fazio, R. & Schön, G. The Bose–Hubbard model: From Josephson junction arrays to optical lattices. Ann. Phys. 14, 566–577 (2005).

    Article  Google Scholar 

  6. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1997).

    ADS  Article  Google Scholar 

  7. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  Article  Google Scholar 

  8. Paredes, B. et al. TonksGirardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    ADS  Article  Google Scholar 

  9. Santos, L. et al. Atomic quantum gases in Kagomé lattices. Phys. Rev. Lett. 93, 030601 (2004).

    ADS  Article  Google Scholar 

  10. Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    ADS  Article  Google Scholar 

  11. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    ADS  Article  Google Scholar 

  12. Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005).

    ADS  Article  Google Scholar 

  13. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    ADS  Article  Google Scholar 

  14. Harris, S. E., Field, J. E. & Imamoğlu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990).

    ADS  Article  Google Scholar 

  15. Schmidt, H. & Imamoğlu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    ADS  Article  Google Scholar 

  16. Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997); Erratum: ibid 81, 2836 (1998).

    ADS  Article  Google Scholar 

  17. Werner, M. J. & Imamoğlu, A. Photon-photon interactions in cavity electromagnetically induced transparency. Phys. Rev. A 61, R011801 (1999).

    ADS  Article  Google Scholar 

  18. Grangier, P., Walls, D. F. & Gehri, K. M. Comment on strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 81, 2833 (1998).

    ADS  Article  Google Scholar 

  19. Gehri, K. M., Alge, W. & Grangier, P. Quantum analysis of the photonic blockade mechanism. Phys. Rev. A 60, R2673–R2676 (1999).

    ADS  Article  Google Scholar 

  20. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    ADS  Article  Google Scholar 

  21. Akahane, Y., Asano, T. & Song, B.-S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    ADS  Article  Google Scholar 

  22. Song, B.-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic douple-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    ADS  Article  Google Scholar 

  23. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Article  Google Scholar 

  24. Yang, L., Armani, D. K. & Vahala, K. J. Fiber-coupled erbium microlasers on a chip. Appl. Phys. Lett. 83, 825–826 (2003).

    ADS  Article  Google Scholar 

  25. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    ADS  Article  Google Scholar 

  26. Birnbaum, K. M., Parkins, A. S. & Kimble, H. J. Cavity QED with multiple hyperfine levels. Preprint at <http://www.arxiv.org/quant-ph/0606079> (2006).

  27. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: A proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    ADS  Article  Google Scholar 

  28. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    ADS  Article  Google Scholar 

  29. Lev, B., Srinivasan, K., Barclay, P., Painter, O. & Mabuchi, H. Feasibility of detecting single atoms using photonic bandgap cavities. Nanotechnology 15, 556–561 (2004).

    ADS  Article  Google Scholar 

  30. Glauber, R. J. & Lewenstein, M. Quantum optics of dielectric media. Phys. Rev. A 43, 467–491 (1991).

    ADS  Article  Google Scholar 

  31. Bayindir, M., Tmelkuran, B. & Ozbay, E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2140–2143 (2000).

    ADS  Article  Google Scholar 

  32. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

    ADS  Article  Google Scholar 

  33. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  Google Scholar 

  34. Hartmann, M. J., Reuter, M. E. & Plenio, M. B. Excitation and entanglement transfer versus spectral gap. New. J. Phys. 8, 94 (2006).

    ADS  Article  Google Scholar 

  35. Plenio, M. B., Hartley, J. & Eisert, J. Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New. J. Phys. 6, 36 (2004).

    ADS  Article  Google Scholar 

  36. Eisert, J., Plenio, M. B., Bose, S. & Hartley, J. Towards quantum entanglement in nanoelectromechanical devices. Phys. Rev. Lett. 93, 190402 (2004).

    ADS  Article  Google Scholar 

  37. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    ADS  Article  Google Scholar 

  38. Rebic, S., Parkins, A. S. & Tan, S. M. Polariton analysis of a four-level atom strongly coupled to a cavity mode. Phys. Rev. A 65, 043806 (2002).

    ADS  Article  Google Scholar 

  39. Spillane, S. M. et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005).

    ADS  Article  Google Scholar 

  40. Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101–144 (1998).

    ADS  Article  Google Scholar 

  41. Jack, M. W. & Yamashita, M. Bose–Hubbard model with attractive interactions. Phys. Rev. A 71, 023610 (2005).

    ADS  Article  Google Scholar 

  42. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    ADS  Article  Google Scholar 

  43. Fleischhauer, M., Imamoğlu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Article  Google Scholar 

  44. Imamoğlu, A. High efficiency photon counting using stored light. Phys. Rev. Lett. 89, 163602 (2002).

    ADS  Article  Google Scholar 

  45. James, D. F. V. & Kwiat, P. G. Atomic-vapor-based high efficiency optical detectors with photon number resolution. Phys. Rev. Lett. 89, 183601 (2002).

    ADS  Article  Google Scholar 

  46. Hartmann, M., Mahler, G. & Hess, O. Existence of temperature on the nanoscale. Phys. Rev. Lett. 93, 080402 (2004).

    ADS  Article  Google Scholar 

  47. Hartmann, M. Minimal length scales for the existence of local temperature. Contemp. Phys. 47, 89–102 (2006).

    ADS  Article  Google Scholar 

  48. Güney, D. Ö. & Meyer, D. A. Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity. Preprint at <http://www.arxiv.org/quant-ph/0603087> (2006).

  49. Azuma, H. Quantum computation with Kerr-nonlinear photonic crystals. Preprint at <http://www.arxiv.org/quant-ph/0604086> (2006).

  50. Angelakis, D. G., Santos, M. F. & Bose, S. Photon blockade induced Mott transitions and XY spin models in coupled cavity arrays. Preprint at <http://www.arxiv.org/quant-ph/0606159> (2006).

Download references

Acknowledgements

The authors thank Ataç Imamoğlu, Tobias Kippenberg and Kerry Vahala for discussions and Alex Retzker for proofreading the manuscript. This work is part of the QIP-IRC supported by EPSRC and the Integrated Project Qubit Applications (QAP) supported by the IST directorate and was supported by the Alexander von Humboldt Foundation, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael J. Hartmann or Martin B. Plenio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hartmann, M., Brandão, F. & Plenio, M. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys 2, 849–855 (2006). https://doi.org/10.1038/nphys462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys462

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing