Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot


‘Motional narrowing’ refers to the striking phenomenon where the resonance line of a system coupled to a reservoir becomes narrower on increasing the reservoir fluctuation. A textbook example is found in nuclear magnetic resonance, where the fluctuating local magnetic fields created by randomly oriented nuclear spins are averaged when the motion of the nuclei is thermally activated. The existence of a motional-narrowing effect in the optical response of semiconductor quantum dots remains so far unexplored. This effect may be important in this instance because the decoherence dynamics is a central issue for the implementation of quantum information processing based on quantum dots. Here we report on the experimental evidence of motional narrowing in the optical spectrum of a semiconductor quantum dot broadened by the spectral-diffusion phenomenon. Surprisingly, motional narrowing is achieved when decreasing incident power or temperature, in contrast with the standard phenomenology observed for nuclear magnetic resonance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fourier-transform spectroscopy on the emission line of a single quantum dot as a function of incident power.
Figure 2: Monte Carlo simulations of the fluctuating environment.
Figure 3: Linewidth and line-shape variations as a function of incident power.
Figure 4: Temperature-dependent study of the single-quantum-dot line profile.


  1. Bloembergen, N., Purcell, E. M. & Pound, R. V. Relaxation effects in nuclear magnetic resonance. Phys. Rev. 73, 679–715 (1948).

    Article  ADS  Google Scholar 

  2. Kubo, R. in Fluctuation, Relaxation and Resonance in Magnetic Systems (ed. Ter Haar, D.) 23–68 (Oliver and Boyd, Edinburgh, 1962).

    Google Scholar 

  3. Dyakonov, M. I. & Perel, V. I. Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov. Phys. JETP 33, 1053–1059 (1971).

    ADS  Google Scholar 

  4. Oxtoby, D. W. Hydrodynamic theory of vibrational dephasing in liquids. J. Chem. Phys. 70, 2605–2610 (1979).

    Article  ADS  Google Scholar 

  5. Eberly, J. H., Wódkiewicz, K. & Shore, B. W. Noise in strong laser-atom interactions: Phase telegraph noise. Phys. Rev. A 30, 2381–2389 (1984).

    Article  ADS  Google Scholar 

  6. Flach, R., Hamilton, D. S., Selzer, P. M. & Yen, W. M. Time-resolved fluorescence line-narrowing studies in LaF3:Pr3+. Phys. Rev. Lett. 35, 1034–1037 (1975).

    Article  ADS  Google Scholar 

  7. Ambrose, W. P. & Moerner, W. E. Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. Nature 349, 225–227 (1991).

    Article  ADS  Google Scholar 

  8. Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    Article  ADS  Google Scholar 

  9. Robinson, H. D. & Goldberg, B. B. Light-induced spectral diffusion in single self-assembled quantum dots. Phys. Rev. B 61, R5086–5089 (2000).

    Article  ADS  Google Scholar 

  10. Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Few-particle effects in single CdTe quantum dots. Phys. Rev. B 65, 121314 (2002).

    Article  ADS  Google Scholar 

  11. Kammerer, C. et al. Interferometric correlation spectroscopy in single quantum dots. Appl. Phys. Lett. 81, 2737 (2002).

    Article  ADS  Google Scholar 

  12. Gérard, J. M. et al. Optical investigation of the self-organized growth of InAs/GaAs quantum boxes. J. Cryst. Growth 150, 351–356 (1995).

    Article  ADS  Google Scholar 

  13. Heitz, R. et al. Observation of reentrant 2D to 3D morphology transition in highly strained epitaxy: InAs on GaAs. Phys. Rev. Lett. 78, 4071–4074 (1997).

    Article  ADS  Google Scholar 

  14. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostrutures (Spinger, Berlin, 1998).

    Google Scholar 

  15. Lohner, A., Woerner, M., Elsaesser, M. & Kaiser, W. Picosecond capture of photoexcited holes by shallow acceptors in p-type GaAs. Phys. Rev. Lett. 68, 3920–3923 (1992).

    Article  ADS  Google Scholar 

  16. Carroll, J.E. Rate Equation in Semiconductor Electronics (Cambridge Univ. Press, 1985).

    Google Scholar 

  17. O’Hara, K. E., Gullingsrud, J. R. & Wolfe, J. P. Auger decay of excitons in Cu2O. Phys. Rev. B 60, 10872–10885 (1999).

    Article  ADS  Google Scholar 

  18. Jusserand, B. & Cardona, M. in Light Scattering in Solids V (eds Cardona, M. & Guntherrodt, G.) 49–152 (Springer, Heidelberg, 1989).

    Book  Google Scholar 

  19. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  20. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  21. Bylander, J., Robert-Philip, I. & Abram, I. Interference and correlation of two independent photons. Eur. Phys. J. D 22, 295–301 (2003).

    Article  ADS  Google Scholar 

  22. Kammerer, C. et al. Line narrowing in single semiconductor quantum dots: Toward the control of environment effects. Phys. Rev. B 66, 041306 (2002).

    Article  ADS  Google Scholar 

  23. Urbaszek, B. et al. Temperature-dependent linewidth of charged excitons in semiconductor quantum dots: Strongly broadened ground state transitions due to acoustic phonon scattering. Phys. Rev. B 69, 035304 (2004).

    Article  ADS  Google Scholar 

  24. Ortner, G. et al. Temperature dependence of the zero-phonon linewidth in InAs/GaAs quantum dots. Phys. Rev. B 70, 201301 (2004).

    Article  ADS  Google Scholar 

  25. Borri, P. et al. Exciton dephasing via phonon interactions in InAs quantum dots: Dependence on quantum confinement. Phys. Rev. B 71, 115328 (2005).

    Article  ADS  Google Scholar 

  26. Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).

    Article  ADS  Google Scholar 

  27. Borri, P. et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001).

    Article  ADS  Google Scholar 

  28. Favero, I. et al. Acoustic phonon side-bands in the emission line of single InAs/GaAs quantum dots. Phys. Rev. B 68, 233301 (2003).

    Article  ADS  Google Scholar 

Download references


We thank A. Jankovic, C. Ciuti and B. Gayral for discussions. LPA-ENS is ‘unité mixte (UMR 8551) de l’ENS, du CNRS, des Universités Paris 6 et 7’. This work is financially supported by the region Ile de France.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. Cassabois.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berthelot, A., Favero, I., Cassabois, G. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Phys 2, 759–764 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing