Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-Hermitian physics and PT symmetry

Abstract

In recent years, notions drawn from non-Hermitian physics and parity–time (PT) symmetry have attracted considerable attention. In particular, the realization that the interplay between gain and loss can lead to entirely new and unexpected features has initiated an intense research effort to explore non-Hermitian systems both theoretically and experimentally. Here we review recent progress in this emerging field, and provide an outlook to future directions and developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic presentation of a PT-coupled system and first experimental observations of spontaneous PT symmetry breaking.
Figure 2: Unidirectional invisibility and PT-symmetric arrays.
Figure 3: PT-symmetric lasing systems and exceptional point encirclement.
Figure 4: Future directions in PT-symmetric optics.

Similar content being viewed by others

References

  1. Gamow, G. Zur Quantentheorie des Atomkernes. Z. Für Phys. 51, 204–212 (1928).

    ADS  MATH  Google Scholar 

  2. Feshbach, H., Porter, C. E. & Weisskopf, V. F. Model for nuclear reactions with neutrons. Phys. Rev. 96, 448–464 (1954).

    ADS  MATH  Google Scholar 

  3. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).

    ADS  MathSciNet  MATH  Google Scholar 

  4. Carmichael, H. An Open Systems Approach to Quantum Optics: Lectures Presented at the Université libre de Bruxelles (Springer, 1993).

    Google Scholar 

  5. Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 5, 357–390 (1958).

    ADS  MathSciNet  MATH  Google Scholar 

  6. Mahaux, C. & Weidenmüller, H. A. Shell-Model Approach to Nuclear Reactions (North-Holland, 1969).

    Google Scholar 

  7. Heiss, W. D. Exceptional points of non-Hermitian operators. J. Phys. Math. Gen. 37, 2455–2464 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  8. Berry, M. V. Physics of nonhermitian degeneracies. Czechoslov. J. Phys. 54, 1039–1047 (2004).

    ADS  Google Scholar 

  9. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).

    ADS  MathSciNet  Google Scholar 

  10. Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. Math. Theor. 42, 153001 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  11. Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011).

    MATH  Google Scholar 

  12. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bender, C. M., Boettcher, S. & Meisinger, P. N. PT-symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

    MathSciNet  MATH  Google Scholar 

  15. Lévai, G. & Znojil, M. Systematic search for -symmetric potentials with real energy spectra. J. Phys. Math. Gen. 33, 7165–7180 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  16. Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    ADS  Google Scholar 

  17. El-Ganainy, R., Makris, K. G., Christodoulides, D. N. & Musslimani, Z. H. Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).

    ADS  Google Scholar 

  18. Musslimani, Z. H., Makris, K. G., El-Ganainy, R. & Christodoulides, D. N. Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 30402 (2008).

    ADS  Google Scholar 

  19. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    ADS  Google Scholar 

  20. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Google Scholar 

  21. Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101 (2011).

    ADS  Google Scholar 

  22. Bittner, S. et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett. 108, 024101 (2012).

    ADS  Google Scholar 

  23. Bender, C. M., Berntson, B. K., Parker, D. & Samuel, E. Observation of PT phase transition in a simple mechanical system. Am. J. Phys. 81, 173–179 (2013).

    ADS  Google Scholar 

  24. Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 5905 (2015).

    ADS  Google Scholar 

  25. Hang, C., Huang, G. & Konotop, V. V. PT symmetry with a system of three-level atoms. Phys. Rev. Lett. 110, 083604 (2013).

    ADS  Google Scholar 

  26. Zhang, Z. et al. Observation of parity-time symmetry in optically induced atomic lattices. Phys. Rev. Lett. 117, 123601 (2016).

    ADS  Google Scholar 

  27. Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).

    Google Scholar 

  28. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    ADS  Google Scholar 

  29. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).

    ADS  Google Scholar 

  30. Knight, J. C., Broeng, J., Birks, T. A. & Russell, P. S. J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998).

    Google Scholar 

  31. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    ADS  Google Scholar 

  32. Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    ADS  Google Scholar 

  33. Zhu, X., Feng, L., Zhang, P., Yin, X. & Zhang, X. One-way invisible cloak using parity-time symmetric transformation optics. Opt. Lett. 38, 2821–2824 (2013).

    ADS  Google Scholar 

  34. Sounas, D. L., Fleury, R. & Alù, A. Unidirectional cloaking based on metasurfaces with balanced loss and gain. Phys. Rev. Appl. 4, 014005 (2015).

    ADS  Google Scholar 

  35. Makris, K. G., Musslimani, Z. H., Christodoulides, D. N. & Rotter, S. Constant-intensity waves and their modulation instability in non-Hermitian potentials. Nat. Commun. 6, 8257 (2015).

    Google Scholar 

  36. Makris, K. G., Brandstötter, A., Ambichl, P., Musslimani, Z. H. & Rotter, S. Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6, e17035 (2017).

    ADS  Google Scholar 

  37. Lazarides, N. & Tsironis, G. P. Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials. Phys. Rev. Lett. 110, 053901 (2013).

    ADS  Google Scholar 

  38. Monticone, F., Valagiannopoulos, C. A. & Alu, A. Aberration-free imaging based on parity-time symmetric nonlocal metasurfaces. Phys. Rev. X 6, 041018 (2016).

    Google Scholar 

  39. Kulishov, M., Jones, H. F. & Kress, B. Analysis of unidirectional non-paraxial invisibility of purely reflective PT-symmetric volume gratings. Opt. Exp. 23, 18694–18711 (2015).

    ADS  Google Scholar 

  40. Longhi, S. Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103, 123601 (2009).

    ADS  Google Scholar 

  41. Bendix, O., Fleischmann, R., Kottos, T. & Shapiro, B. Exponentially fragile PT symmetry in lattices with localized eigenmodes. Phys. Rev. Lett. 103, 030402 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  42. Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011).

    ADS  Google Scholar 

  43. Ramezani, H., Christodoulides, D. N., Kovanis, V., Vitebskiy, I. & Kottos, T. PT-symmetric Talbot effects. Phys. Rev. Lett. 109, 033902 (2012).

    ADS  Google Scholar 

  44. Jović, D. M., Denz, C. & Belić, M. R. Anderson localization of light in PT-symmetric optical lattices. Opt. Lett. 37, 4455–4457 (2012).

    ADS  Google Scholar 

  45. Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012).

    ADS  Google Scholar 

  46. Wimmer, M., Miri, M.-A., Christodoulides, D. & Peschel, U. Observation of Bloch oscillations in complex PT-symmetric photonic lattices. Sci. Rep. 5, 17760 (2015).

    ADS  Google Scholar 

  47. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    ADS  Google Scholar 

  48. Feng, L. et al. Demonstration of a large-scale optical exceptional point structure. Opt. Exp. 22, 1760–1767 (2014).

    ADS  Google Scholar 

  49. Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    ADS  Google Scholar 

  50. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    ADS  Google Scholar 

  51. Petermann, K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron. 15, 566–570 (1979).

    ADS  MathSciNet  Google Scholar 

  52. Hamel, W. A. & Woerdman, J. P. Observation of enhanced fundamental linewidth of a laser due to nonorthogonality of its longitudinal eigenmodes. Phys. Rev. Lett. 64, 1506 (1990).

    ADS  Google Scholar 

  53. Grangier, P. & Poizat, J.-P. A simple quantum picture for the Petermann excess noise factor. Eur. Phys. J. 1, 97–104 (1998).

    ADS  Google Scholar 

  54. Wenzel, H., Bandelow, U., Wunsche, H.-J. & Rehberg, J. Mechanisms of fast self pulsations in two-section DFB lasers. IEEE J. Quantum Electron. 32, 69–78 (1996).

    ADS  Google Scholar 

  55. Wan, C. & Leger, J. R. Experimental measurements of path length sensitivity in coherent beam combining by spatial filtering. IEEE J. Quantum Electron. 48, 1045–1051 (2012).

    ADS  Google Scholar 

  56. Yoo, G., Sim, H.-S. & Schomerus, H. Quantum noise and mode nonorthogonality in non-Hermitian PT-symmetric optical resonators. Phys. Rev. A 84, 063833 (2011).

    ADS  Google Scholar 

  57. Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Google Scholar 

  58. Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014).

    ADS  Google Scholar 

  59. Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

    ADS  Google Scholar 

  60. Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014).

    ADS  Google Scholar 

  61. Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    ADS  Google Scholar 

  62. Gentry, C. M. & Popović, M. A. Dark state lasers. Opt. Lett. 39, 4136–4139 (2014).

    ADS  Google Scholar 

  63. Hodaei, H. et al. Dark-state lasers: mode management using exceptional points. Opt. Lett. 41, 3049–3052 (2016).

    ADS  Google Scholar 

  64. Miri, M.-A., LiKamWa, P. & Christodoulides, D. N. Large area single-mode parity–time-symmetric laser amplifiers. Opt. Lett. 37, 764–766 (2012).

    ADS  Google Scholar 

  65. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Google Scholar 

  66. Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    ADS  Google Scholar 

  67. Hodaei, H. et al. Single mode lasing in transversely multi-moded PT-symmetric microring resonators. Laser Photon. Rev. 10, 494–499 (2016).

    ADS  Google Scholar 

  68. Demange, G. & Graefe, E.-M. Signatures of three coalescing eigenfunctions. J. Phys. Math. Theor. 45, 25303 (2012).

    MathSciNet  MATH  Google Scholar 

  69. Wiersig, J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014).

    ADS  Google Scholar 

  70. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    ADS  Google Scholar 

  71. Chen, W., Ozdemir, S. K., Zhao, G., Wiersig, J. & Yang, L. Exceptional points enhanced sensing in an optical microcavity. Nature 548, 192–196 (2017).

    ADS  Google Scholar 

  72. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    ADS  Google Scholar 

  73. Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801 (2010).

    ADS  Google Scholar 

  74. Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016).

    ADS  Google Scholar 

  75. Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

    ADS  Google Scholar 

  76. Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Nonlinearly induced PT transition in photonic systems. Phys. Rev. Lett. 111, 263901 (2013).

    ADS  Google Scholar 

  77. Hassan, A. U., Hodaei, H., Miri, M.-A., Khajavikhan, M. & Christodoulides, D. N. Nonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonators. Phys. Rev. A 92, 063807 (2015).

    ADS  Google Scholar 

  78. Ge, L. & El-Ganainy, R. Nonlinear modal interactions in parity-time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016).

    ADS  Google Scholar 

  79. Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

    ADS  Google Scholar 

  80. Ablowitz, M. J. & Musslimani, Z. H. Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013).

    ADS  Google Scholar 

  81. Alexeeva, N. V., Barashenkov, I. V., Sukhorukov, A. A. & Kivshar, Y. S. Optical solitons in PT-symmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (2012).

    ADS  Google Scholar 

  82. Kartashov, Y. V., Malomed, B. A. & Torner, L. Unbreakable PT symmetry of solitons supported by inhomogeneous defocusing nonlinearity. Opt. Lett. 39, 5641–5644 (2014).

    ADS  Google Scholar 

  83. Konotop, V. V., Yang, J. & Zezyulin, D. A. Nonlinear waves in PT -symmetric systems. Rev. Mod. Phys. 88, 035002 (2016).

    ADS  Google Scholar 

  84. Wimmer, M. et al. Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015).

    ADS  Google Scholar 

  85. Ramezani, H., Kottos, T., El-Ganainy, R. & Christodoulides, D. N. Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 043803 (2010).

    ADS  Google Scholar 

  86. Aleahmad, P., Khajavikhan, M., Christodoulides, D. N. & LiKamWa, P. Integrated multi-port circulators for unidirectional optical information transport. Sci. Rep. 7, 2129 (2017).

    ADS  Google Scholar 

  87. Wasak, T., Szańkowski, P., Konotop, V. V. & Trippenbach, M. Four-wave mixing in a parity-time (PT)-symmetric coupler. Opt. Lett. 40, 5291–5294 (2015).

    ADS  Google Scholar 

  88. El-Ganainy, R., Dadap, J. I. & Osgood, R. M. Optical parametric amplification via non-Hermitian phase matching. Opt. Lett. 40, 5086–5089 (2015).

    ADS  Google Scholar 

  89. Jing, H. et al. Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015).

    Google Scholar 

  90. Mailybaev, A. A., Kirillov, O. N. & Seyranian, A. P. Geometric phase around exceptional points. Phys. Rev. A 72, 014104 (2005).

    ADS  Google Scholar 

  91. Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001).

    ADS  Google Scholar 

  92. Lee, S.-B. et al. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett. 103, 134101 (2009).

    ADS  Google Scholar 

  93. Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).

    ADS  Google Scholar 

  94. Uzdin, R., Mailybaev, A. & Moiseyev, N. On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. Math. Theor. 44, 435302 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  95. Milburn, T. J. et al. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A 92, 052124 (2015).

    ADS  Google Scholar 

  96. Doppler, J. et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016).

    ADS  Google Scholar 

  97. Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    ADS  Google Scholar 

  98. Hassan, A. U., Zhen, B., Soljačić, M., Khajavikhan, M. & Christodoulides, D. N. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett. 118, 093002 (2017).

    ADS  Google Scholar 

  99. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Google Scholar 

  100. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Google Scholar 

  101. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Google Scholar 

  102. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    ADS  Google Scholar 

  103. Chen, W.-J et al. Experimental realization of photonic topologicalinsulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014).

    ADS  Google Scholar 

  104. Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

    ADS  Google Scholar 

  105. Weimann, S. et al. Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    ADS  Google Scholar 

  106. Hu, Y. C. & Hughes, T. L. Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians. Phys. Rev. B 84, 153101 (2011).

    ADS  Google Scholar 

  107. Rudner, M. S. & Levitov, L. S. Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett. 102, 065703 (2009).

    ADS  Google Scholar 

  108. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    ADS  Google Scholar 

  109. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    ADS  Google Scholar 

  110. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    ADS  Google Scholar 

  111. Lupu, A., Benisty, H. & Degiron, A. Switching using PT symmetry in plasmonic systems: positive role of the losses. Opt. Exp. 21, 21651–21668 (2013).

    ADS  Google Scholar 

  112. Kreibich, M., Main, J., Cartarius, H. & Wunner, G. Realizing PT-symmetric non-Hermiticity with ultracold atoms and Hermitian multiwell potentials. Phys. Rev. A 90, 033630 (2014).

    ADS  Google Scholar 

  113. Andreani, L. C., Panzarini, G. & Gérard, J.-M. Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276–13279 (1999).

    ADS  Google Scholar 

  114. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    ADS  Google Scholar 

  115. Xu, X.-W., Liu, Y., Sun, C.-P. & Li, Y. Mechanical PT symmetry in coupled optomechanical systems. Phys. Rev. A 92, 13852 (2015).

    ADS  Google Scholar 

  116. Kepesidis, K. V. et al. PT-symmetry breaking in the steady state of microscopic gain–loss systems. New J. Phys. 18, 95003 (2016).

    Google Scholar 

  117. Lamb, W. E., Schlicher, R. R. & Scully, M. O. Matter-field interaction in atomic physics and quantum optics. Phys. Rev. A 36, 2763–2772 (1987).

    ADS  Google Scholar 

  118. Shi, C. et al. Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun. 7, 11110 (2016).

    ADS  Google Scholar 

  119. Aurégan, Y. & Pagneux, V. P T-symmetric scattering in flow duct acoustics. Phys. Rev. Lett. 118, 174301 (2017).

    ADS  Google Scholar 

  120. Vanderbruggen, T., Álvarez, S. P., Coop, S., Martinez de Escobar, N. & Mitchell, M. W. Spontaneous PT symmetry breaking of a ferromagnetic superfluid in a gradient field. Europhys. Lett. 111, 66001 (2015).

    ADS  Google Scholar 

  121. Zhang, L., Agarwal, G. S., Schleich, W. P. & Scully, M. O. Hidden PT Symmetry and quantization of a coupled-oscillators model of quantum amplification by superradiant emission of radiation. Phys. Rev. A 96, 013827 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from NSF CAREER Award (ECCS-1454531), NSF (ECCS-1545804, DMR-1420620, EECS-1757025), AFOSR (FA9550-14-1-0037), ARO (W911NF-16-1-0013, W911NF-17-1-0481), and ONR (N00014-16-1-2640). K.G.M. and S.R. were funded by the European Commission under projects NOLACOME (PIOF 303228), NHQWAVE (MSCA-RISE 691209), and by the Austrian Science Fund (FWF) through Projects No. F25 (SFB IR-ON), No. F49 (SFB NextLite), No. I1142-N27 (GePartWave). K.G.M. was also supported by the European Union Seventh Framework Program (FP7-REGPOT-2012-2013-1) under grant agreement 316165.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Demetrios N. Christodoulides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ganainy, R., Makris, K., Khajavikhan, M. et al. Non-Hermitian physics and PT symmetry. Nature Phys 14, 11–19 (2018). https://doi.org/10.1038/nphys4323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing