How drops start sliding over solid surfaces

Abstract

It has been known for more than 200 years that the maximum static friction force between two solid surfaces is usually greater than the kinetic friction force—the force that is required to maintain the relative motion of the surfaces once the static force has been overcome. But the forces that impede the lateral motion of a drop of liquid on a solid surface are not as well characterized, and there is a lack of understanding about liquid–solid friction in general. Here, we report that the lateral adhesion force between a liquid drop and a solid can also be divided into a static and a kinetic regime. This striking analogy with solid–solid friction is a generic phenomenon that holds for liquids of different polarities and surface tensions on smooth, rough and structured surfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematics of friction force measurements.
Figure 2: Lateral adhesion force experiment of a drop of ionic liquid (volume ≈1.5 μl) on a fluorinated silicon wafer.
Figure 3: Lateral adhesion forces for drops of different liquids on solid surfaces.
Figure 4: Velocity dependence of lateral adhesion forces.
Figure 5: Lateral adhesion force measurement of a water drop on a goose feather.

References

  1. 1

    Archard, J. F. Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953).

  2. 2

    Persson, B. T. in Encyclopedia of Lubricants and Lubrication (ed. Mang, T.) Ch. 80, 791–797 (Springer, 2014).

  3. 3

    Butt, H.-J. & Kappl, M. Friction (Wiley-VCH GmbH & Co. KGaA, 2010).

  4. 4

    Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 (2004).

  5. 5

    Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 13, 3299–3305 (2001).

  6. 6

    Cheng, P., Quan, X., Gong, S., Liu, X. & Yang, L. in Advances in Heat Transfer Vol. 46 (eds Cho, Y. I., Abraham, J. P., Sparrow, E. M. & Gorman, J. M.) 187–248 (Elsevier, 2014).

  7. 7

    Rykaczewski, K. et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci. Rep. 4, 4158 (2014).

  8. 8

    Zheng, Y. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

  9. 9

    Park, K.-C., Chhatre, S. S., Srinivasan, S., Cohen, R. E. & McKinley, G. H. Optimal design of permeable fiber network structures for fog harvesting. Langmuir 29, 13269–13277 (2013).

  10. 10

    Bowden, F. P. & Tabor, D. The Friction and Lubrication of Solids (Clarendon, 2001).

  11. 11

    Bhushan, B., Israelachvili, J. N. & Landman, U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995).

  12. 12

    Semprebon, C. & Brinkmann, M. On the onset of motion of sliding drops. Soft Matter 10, 3325–3334 (2014).

  13. 13

    Extrand, C. W. & Gent, A. N. Retention of liquid drops by solid surfaces. J. Colloid Interface Sci. 138, 431–442 (1990).

  14. 14

    Brown, R. A., Orr, F. M. Jr & Scriven, L. E. Static drop on an inclined plate: Analysis by the finite element method. J. Colloid Interface Sci. 73, 76–87 (1980).

  15. 15

    Extrand, C. W. & Kumagai, Y. Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retentive force. J. Colloid Interface Sci. 170, 515–521 (1995).

  16. 16

    Frenkel, Y. I. On the behaviour of drops of liquid on the surface of a solid. I. Sliding of drops on an inclined plane. J. Exp. Theor. Phys. 18, 658–667 (1948).

  17. 17

    Kawasaki, K. Study of wettability of polymers by sliding of water drop. J. Colloid Sci. 15, 402–407 (1960).

  18. 18

    ElSherbini, A. & Jacobi, A. Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J. Colloid Interface Sci. 299, 841–849 (2006).

  19. 19

    Dussan, V. On the ability of drops to stick to surfaces of solids. Part 3. The influences of the motion of the surrounding fluid on dislodging drops. J. Fluid Mech. 174, 381–397 (1987).

  20. 20

    Wolfram, E. & Faust, R. in Wetting, Spreading, and Adhesion (ed. Padday, J. F.) 213 (Academic, 1978).

  21. 21

    Antonini, C., Carmona, F. J., Pierce, E., Marengo, M. & Amirfazli, A. General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces. Langmuir 25, 6143–6154 (2009).

  22. 22

    Berejnov, V. & Thorne, R. E. Effect of transient pinning on stability of drops sitting on an inclined plane. Phys. Rev. E 75, 066308 (2007).

  23. 23

    Tadmor, R. et al. Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate. Phys. Rev. Lett. 103, 266101 (2009).

  24. 24

    Timonen, J. V. I., Latikka, M., Ikkala, O. & Ras, R. H. A. Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nat. Commun. 4, 2398 (2013).

  25. 25

    Lagubeau, G., Le Merrer, M., Clanet, C. & Quere, D. Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (2011).

  26. 26

    Pilat, D. W. et al. Dynamic measurement of the force required to move a liquid drop on a solid surface. Langmuir 28, 16812–16820 (2012).

  27. 27

    ’t Mannetje, D. et al. Electrically tunable wetting defects characterized by a simple capillary force sensor. Langmuir 29, 9944–9949 (2013).

  28. 28

    Olin, P., Lindström, S. B., Pettersson, T. & Wågberg, L. Water drop friction on superhydrophobic surfaces. Langmuir 29, 9079–9089 (2013).

  29. 29

    Pierce, E., Carmona, F. J. & Amirfazli, A. Understanding of sliding and contact angle results in tilted plate experiments. Colloids Surf. A 323, 73–82 (2008).

  30. 30

    Sakai, M. et al. Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir 22, 4906–4909 (2006).

  31. 31

    Griffiths, P. R. Static and Dynamic Components of Droplet Friction Master of Science in Mechanical Engineering thesis, Univ. South Florida (2013).

  32. 32

    Snoeijer, J. H. & Andreotti, B. Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269–292 (2013).

  33. 33

    Perrin, H., Lhermerout, R., Davitt, K., Rolley, E. & Andreotti, B. Defects at the nanoscale impact contact line motion at all scales. Phys. Rev. Lett. 116, 184502 (2016).

  34. 34

    Huang, K. & Szlufarska, I. Green-Kubo relation for friction at liquid-solid interfaces. Phys. Rev. E 89, 032119 (2014).

  35. 35

    Daniel, D., Timonen, J. V. I., Li, R., Velling, S. J. & Aizenberg, J. Oleoplaning droplets on lubricated surfaces. Nat. Phys. 13, 1020–1025 (2017).

  36. 36

    Butt, H.-J. et al. Energy dissipation of moving drops on superhydrophobic and superoleophobic surfaces. Langmuir 33, 107–116 (2017).

  37. 37

    Israelachvili, J. N. Intermolecular and Surface Forces (Elsevier Science, 2011).

  38. 38

    Butt, H.-J. & Kappl, M. Surface and Interfacial Forces (Wiley, 2010).

  39. 39

    Zhang, J. & Seeger, S. Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angew. Chem. Int. Ed. 50, 6652–6656 (2011).

  40. 40

    Artus, G. R. et al. Silicone nanofilaments and their application as superhydrophobic coatings. Adv. Mater. 18, 2758–2762 (2006).

  41. 41

    Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. & Butt, H.-J. How superhydrophobicity breaks down. Proc. Natl Acad. Sci. USA 110, 3254–3258 (2013).

  42. 42

    Krumpfer, J. W. & McCarthy, T. J. Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces. Faraday Discuss. 146, 103–111 (2010).

  43. 43

    Wooh, S., Koh, J. H., Lee, S., Yoon, H. & Char, K. Trilevel-structured superhydrophobic pillar arrays with tunable optical functions. Adv. Funct. Mater. 24, 5550–5556 (2014).

  44. 44

    Suda, H. & Yamada, S. Force measurements for the movement of a water drop on a surface with a surface tension gradient. Langmuir 19, 529–531 (2003).

  45. 45

    Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, 1987).

  46. 46

    Schellenberger, F., Encinas, N., Vollmer, D. & Butt, H.-J. How water advances on superhydrophobic surfaces. Phys. Rev. Lett. 116, 096101 (2016).

Download references

Acknowledgements

We thank G. Auernhammer, M. Bonn, N. Encinas, M. Kappl, T. Kajiya, P. Papadopoulos, F. Schellenberger, W. Steffen and D. Wang for simulating discussions, and M. Bach, G. Glaser and G. Schäfer for technical support. This work was supported by the Collaborative Research Center 1194 (H.-J.B.), ERC advanced grant 340391 SUPRO (H.-J.B.), SPP 8173 (D.V.) and the EU Marie Sklodowska-Curie grant 722497 (D.V.). N.G. thanks the National Postdoctoral Science Foundation of China for the International Postdoctoral Fellowship, and S.W. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship. D.W.P. is grateful for funding from the German National Academic Foundation.

Author information

N.G. carried out the experiments and wrote the manuscript. D.W.P., N.G., R.B. and H.-J.B. designed and constructed the homebuilt set-up. F.G. and S.W. prepared the solid surfaces. R.B., D.V., N.G. and H.-J.B. contributed to the experimental planning, data analysis, and manuscript preparation. All authors reviewed and approved the manuscript.

Correspondence to Nan Gao or Rüdiger Berger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1889 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 3143 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 2664 kb)

Supplementary Movie

Supplementary Movie 3 (AVI 3175 kb)

Supplementary Movie

Supplementary Movie 4 (AVI 3013 kb)

Supplementary Movie

Supplementary Movie 5 (AVI 2711 kb)

Supplementary Movie

Supplementary Movie 6 (AVI 3296 kb)

Supplementary Movie

Supplementary Movie 7 (AVI 2864 kb)

Supplementary Movie

Supplementary Movie 8 (AVI 407 kb)

Supplementary Movie

Supplementary Movie 9 (AVI 1429 kb)

Supplementary Movie

Supplementary Movie 10 (AVI 374 kb)

Supplementary Movie

Supplementary Movie 11 (AVI 1356 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Geyer, F., Pilat, D. et al. How drops start sliding over solid surfaces. Nat. Phys. 14, 191–196 (2018). https://doi.org/10.1038/nphys4305

Download citation

Further reading