Letter | Published:

Topologically protected refraction of robust kink states in valley photonic crystals

Nature Physics volume 14, pages 140144 (2018) | Download Citation

Abstract

Recently discovered1,2 valley photonic crystals (VPCs) mimic many of the unusual properties of two-dimensional (2D) gapped valleytronic materials3,4,5,6,7,8,9. Of the utmost interest to optical communications is their ability to support topologically protected chiral edge (kink) states3,4,5,6,7,8,9 at the internal domain wall between two VPCs with opposite valley-Chern indices. Here we experimentally demonstrate valley-polarized kink states with polarization multiplexing in VPCs, designed from a spin-compatible four-band model. When the valley pseudospin is conserved, we show that the kink states exhibit nearly perfect out-coupling efficiency into directional beams, through the intersection between the internal domain wall and the external edge separating the VPCs from ambient space. The out-coupling behaviour remains topologically protected even when we break the spin-like polarization degree of freedom (DOF), by introducing an effective spin–orbit coupling in one of the VPC domains. This also constitutes the first realization of spin–valley locking for topological valley transport.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

  2. 2.

    et al. Valley Photonic crystals for control of spin and topology. Nat. Mater. 16, 298–302 (2017).

  3. 3.

    , & Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

  4. 4.

    , & Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008).

  5. 5.

    , & Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

  6. 6.

    et al. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

  7. 7.

    , & Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

  8. 8.

    et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

  9. 9.

    et al. Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotech. 11, 1060–1065 (2016).

  10. 10.

    , & Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

  11. 11.

    & Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

  12. 12.

    , , & Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

  13. 13.

    , , & Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

  14. 14.

    et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

  15. 15.

    et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

  16. 16.

    et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014).

  17. 17.

    , , & Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

  18. 18.

    et al. Probing topological protection using a designer surface plasmon structure. Nat. Commun. 7, 11619 (2016).

  19. 19.

    , & Topological states in photonic systems. Nat. Phys. 12, 626–629 (2016).

  20. 20.

    & Scattering-free optical edge states between heterogeneous photonic topological insulators. Phys. Rev. B 95, 165102 (2017).

  21. 21.

    , , & Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).

  22. 22.

    et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

  23. 23.

    , & Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

  24. 24.

    Topological Kirchholff law and bulk-edge correspondance for valley Chern and spin-valley Chern numbers. Phys. Rev. B 88, 161406 (2013).

  25. 25.

    Symmetry protected topological charge in symmetry broken phase: spin-Chern, spin-valley-Chern and mirror-Chern number. Phys. Lett. A 378, 1180–1184 (2014).

  26. 26.

    , , & Marginality of bulk-edge correspondence for single-valley Hamiltonians. Phys. Rev. B 82, 245404 (2010).

  27. 27.

    & The road to 100G deployment. IEEE Commun. Mag. 48, S14–S18 (2010).

  28. 28.

    et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light Sci. Appl. 6, e16207 (2017).

  29. 29.

    et al. Direct observation of valley-polarized topological edge states in a designer surface plasmon crystals. Preprint at (2017).

  30. 30.

    et al. Observation of photonic topological valley-Hall edge states. Preprint at (2017).

Download references

Acknowledgements

This work was sponsored by Nanyang Technological University for NAP Start-up Grants, Singapore Ministry of Education under Grants No. MOE2015-T2-1-070, MOE2015-T2-2-008, MOE2016-T3-1-006 and Tier 1 RG174/16 (S). K.L., Y.Y. and G.S. acknowledge the support of the Air Force Office of Scientific Research under a Grant No. FA9550-15-1-0075, and the Army Research Office under a Grant No. W911NF-16-1-0319.

Author information

Author notes

    • Fei Gao
    •  & Haoran Xue

    These authors contributed equally to this work.

Affiliations

  1. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

    • Fei Gao
    • , Haoran Xue
    • , Zhaoju Yang
    • , Xiao Lin
    • , Yidong Chong
    •  & Baile Zhang
  2. School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA

    • Kueifu Lai
    • , Yang Yu
    •  & Gennady Shvets
  3. Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

    • Kueifu Lai
  4. Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore

    • Yidong Chong
    •  & Baile Zhang

Authors

  1. Search for Fei Gao in:

  2. Search for Haoran Xue in:

  3. Search for Zhaoju Yang in:

  4. Search for Kueifu Lai in:

  5. Search for Yang Yu in:

  6. Search for Xiao Lin in:

  7. Search for Yidong Chong in:

  8. Search for Gennady Shvets in:

  9. Search for Baile Zhang in:

Contributions

All authors contributed extensively to this work. F.G., H.X. and Z.Y. fabricated structures and performed measurements. F.G., Z.Y., Y.Y. and X.L. performed simulation. F.G. and Z.Y. provided major theoretical analysis. K.L. designed part of the unidirectional excitation experiment. Y.C., G.S., and B.Z. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Zhaoju Yang or Gennady Shvets or Baile Zhang.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys4304

Further reading