Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The paradox of quantum black holes

Abstract

The conflict between the principles of quantum mechanics and those of general relativity reached crisis proportions with the discovery that black holes have a heat content, or entropy. But efforts to solve the problem have since led to profound and revolutionary new insights into the quantum structure of space–time. In this review, I will explain not only the conflict but also the surprising ideas that can resolve the apparent inconsistencies between the two most fundamental theories of physics.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Bekenstein, J. D. Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292–3300 (1974).

    ADS  Article  Google Scholar 

  2. Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).

    ADS  MathSciNet  Article  Google Scholar 

  3. Thorne, K. S., Price, R. & Macdonald, D. Black Holes the Membrane Paradigm (Yale Univ. Press, USA, 1986).

    MATH  Google Scholar 

  4. Hawking, S. Black hole explosions? Nature 248, 30–31 (1974).

    ADS  Article  Google Scholar 

  5. Hawking, S. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  6. Lindesay, J. & Susskind, L. An Introduction to Black Holes, Information and the String Theory Revolution (World Scientific, Singapore, 2004).

    MATH  Google Scholar 

  7. Unruh, W. G. Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976).

    ADS  Article  Google Scholar 

  8. Page, D. N. Is black hole evaporation predictable? Phys. Rev. Lett. 44, 301 (1980).

    ADS  Article  Google Scholar 

  9. Banks, T., Susskind, L. & Peskin, M. E. Difficulties for the evolution of pure states into mixed states. Nucl. Phys. B 244, 125 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  10. 't Hooft, G. in Les Houches Gravitation and Quantizations (eds Julia, B. & Zinn-Austin, J.) 173–179 (Les Houches Summer School Series 57, Elsevier, The Netherlands, 1992).

    Google Scholar 

  11. 't Hooft, G. in Proc. New Symmetry Principles in Quantum Field Theory (eds Fröhlich, J. et al.) 275–294 (NATO ASI Series, Plenum, New York, 1992).

    Book  Google Scholar 

  12. 't Hooft, G. Quantum information and information loss in general relativity. Preprint at <http://arxiv.org/gr-qc/9509050> (1995).

  13. 't Hooft, G. in Proc. Perspectives on High Energy Physics and Cosmology (eds. Gonzalez-Arroyo, A. & Lopez, C.) 1–9 (World Scientific, Singapore, 1992).

    Google Scholar 

  14. 't Hooft, G. The scattering matrix approach for the quantum black hole: an overview. Int. J. Mod. Phys. A 11, 4623–4688 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  15. 't Hooft, G. Dimensional reduction in quantum gravity. Preprint at <http://arxiv.org/gr-qc/9310026> (1993).

  16. Hagedorn, R. Nuovo Cimento 3(suppl.), 147–186 (1965).

    Google Scholar 

  17. Fubini, S. & Veneziano, G. Level structure of dual resonance models. Nuovo Cimento A 64, 811–840 (1969).

    ADS  Article  Google Scholar 

  18. Bardakci, K. & Mandelstam, S. Analytic solution of the linear-trajectory bootstrap. Phys. Rev. 184, 1640–1644 (1969).

    ADS  Article  Google Scholar 

  19. Huang, K. & Weinberg, S. Ultimate temperature and the early universe. Phys. Rev. Lett. 25, 895–897 (1970).

    ADS  Article  Google Scholar 

  20. Susskind, L. Some speculations about black hole entropy in string theory. Preprint at <http://arxiv.org/hep-th/9309145> (1993).

  21. Halyo, E., Kol, B., Rajaraman, A. & Susskind, L. Counting Schwarzschild and charged black holes. Phys. Lett. B 401, 15–20 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  22. Horowitz, G. T. & Polchinski, J. A correspondence principle for black holes and strings. Phys. Rev. D 55, 6189–6197 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  23. Horowitz, G. T. & Polchinski, J. Self gravitating fundamental strings. Phys. Rev. D 57, 2557–2563 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  24. Banks, T., Fischler, W., Klebanov, I. R. & Susskind, L. Schwarzschild black holes in matrix theory. II. J. High Energy Phys. 01, 008 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  25. Danielsson, U. Brane anti-brane systems at finite temperature and the entropy of black branes. J. High Energy Phys. 03, 069 (2004).

    Google Scholar 

  26. Halyo, E. Black hole entropy and superconformal field theories on brane-antibrane systems. J. High Energy Phys. 10, 007 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  27. Sen, A. Extremal black holes and elementary string states. Mod. Phys. Lett. A 10, 2081–2094 (1995).

    ADS  Article  Google Scholar 

  28. Peet, A. W. Entropy and supersymmetry of D-dimensional extremal electric black holes versus string states. Nucl. Phys. B 456, 732–752 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  29. Breckenridge, J. C., Myers, R. C., Peet, A. W. & Vafa, C. D-branes and spinning black holes. Phys. Lett. B 391, 93–98 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  30. Polchinski, J. Dirichlet branes and Ramond-Ramond charges. Phys. Rev. Lett. 75, 4724–4727 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  31. Strominger, A. & Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 37, 999–104 (1996).

    MathSciNet  MATH  Google Scholar 

  32. Dijkgraaf, R., Verlinde, E. & Verlinde, H. BPS Spectrum of the five-brane and black hole entropy. Nucl. Phys. B 486, 77–88 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  33. Gubser, S. S., Klebanov, I. R. & Peet, A. W. Entropy and temperature of black 3-branes. Phys. Rev. D 54, 3915–3919 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  34. Horowitz, G. T. & Strominger, A. Counting states of near extremal black holes. Phys. Rev. Lett. 77, 2368–2371 (1996).

    ADS  Article  Google Scholar 

  35. Klebanov, I. R. & Tseytlin, A. A. Intersecting M-branes as four-dimensional black holes. Nucl. Phys. B 475, 179–192 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  36. Klebanov, I. R. & Tseytlin, A. A. Entropy of near-extremal black P-branes. Nucl. Phys. B 475, 164–178 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  37. Maldacena, J. M. & Susskind, L. D-branes and fat black holes. Nucl. Phys. B 475, 679–690 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  38. Mathur, S. D. The fuzzball proposal for black holes: an elementary review. Preprint at <http://arxiv.org/hep-th0502050> (1993).

  39. Dabholkar, A. Exact counting of black hole microstates. Preprint at <http://arxiv.org/hep-th/0409148> (2005).

  40. Sen, A. How does a fundamental string stretch its horizon? Preprint at http://arxiv.org/hep-th/0411255 (2004).

  41. Callan, C. G. & Maldacena, J. M. D-brane approach to black hole quantum mechanics. Nucl. Phys. B 472, 591–608 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  42. Das, S. R. & Mathur, S. D. Comparing decay rates for black holes and D-branes. Nucl. Phys. B 478, 561–576 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  43. Das, S. R., Gibbons, G. W. & Mathur, S. D. Universality of low-energy absorption cross-sections for black holes. Phys. Rev. Lett. 78, 417–419 (1997).

    ADS  Article  Google Scholar 

  44. Das, S. R. & Mathur, S. D. Interactions involving D-branes. Nucl. Phys. B 482, 153–172 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  45. Dhar, A., Mandal, G., Spenta, R. & Wadia, S. R. Absorption versus decay of black holes in string theory and T-symmetry. Phys. Lett. B 388, 51–59 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  46. Susskind, L. & Thorlacius, L. Gedanken experiments involving black holes. Phys. Rev. D 49, 966–974 (1994).

    ADS  MathSciNet  Article  Google Scholar 

  47. Susskind, L. The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  48. Maldacena, J. M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  49. Witten, E. Anti-de Sitter space and holography. Preprint at <http://arxiv.org/hep-th/9802150> (1998).

  50. Susskind, L. & Witten, E. The holographic bound in anti-de Sitter space. Preprint at <http://arxiv.org/hep-th/9805114> (1998).

  51. Banados, M., Henneaux, M., Teitelboim, C. & Zanelli, J. Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506–1525 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  52. Banados, M., Teitelboim, C. & Zanelli, J. The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  53. Witten, E. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998).

    MathSciNet  Article  Google Scholar 

  54. Maldacena, J. M. Eternal black holes in AdS. J. High Energy Phys. 04, 021 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  55. Susskind, L. String theory and the principle of black hole complementarity. Phys. Rev. Lett. 71, 2367–2368 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  56. Susskind, L., Thorlacius, L. & Uglum, J. The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743–3761 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  57. Hawking, S. Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

L.S. is supported by the National Science Foundation under PHY-0097915.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Susskind, L. The paradox of quantum black holes. Nature Phys 2, 665–677 (2006). https://doi.org/10.1038/nphys429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys429

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing