Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6


The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of quantum oscillations in SmB6 with three-dimensional bulk Fermi surface model.
Figure 2: Finite linear specific heat coefficient and quantum oscillatory entropy of SmB6.
Figure 3: Low-temperature thermal conductivity of SmB6.
Figure 4: Schematic phase diagram adapted from numerical simulations.


  1. 1

    Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Kim, D. J. et al. Surface Hall effect and nonlocal transport in SmB6: evidence for surface conduction. Sci. Rep. 3, 3150 (2013).

    Article  Google Scholar 

  3. 3

    Wolgast, S. et al. Low-temperature surface conduction in the Kondo insulator SmB6 . Phys. Rev. B 88, 180405 (2013).

    ADS  Article  Google Scholar 

  4. 4

    Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6 . Phys. Rev. X 3, 011011 (2013).

    Google Scholar 

  5. 5

    Hatnean, M. C., Lees, M. R., Paul, D. M. & Balakrishnan, G. Large, high quality single-crystals of the new topological Kondo insulator, SmB6 . Sci. Rep. 3, 3071 (2013).

    ADS  Article  Google Scholar 

  6. 6

    Phelan, W. et al. Correlation between bulk thermodynamic measurements and the low-temperature-resistance plateau in SmB6 . Phys. Rev. X 4, 031012 (2014).

    Google Scholar 

  7. 7

    Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    ADS  Article  Google Scholar 

  8. 8

    Antonov, V. N., Shpak, A. P. & Yaresko, A. N. Electronic structure of mixed valent systems. Condens. Matter Phys. 7, 211–246 (2004).

    Article  Google Scholar 

  9. 9

    Cooley, J., Aronson, M., Fisk, Z. & Canfield, P. High pressure insulator-metal transition in SmB6 . Physica B 199–200, 486–488 (1994).

    ADS  Article  Google Scholar 

  10. 10

    Gabáni, S. et al. Pressure-induced Fermi-liquid behavior in the Kondo insulator SmB6: possible transition through a quantum critical point. Phys. Rev. B 67, 172406 (2003).

    ADS  Article  Google Scholar 

  11. 11

    Barla, A. et al. High-pressure ground state of SmB6: electronic conduction and long range magnetic order. Phys. Rev. Lett. 94, 166401 (2005).

    ADS  Article  Google Scholar 

  12. 12

    Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6 . Science 346, 1208–1212 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    ADS  Article  Google Scholar 

  14. 14

    Ishizawa, Y., Tanaka, T., Bannai, E. & Kawai, S. de Haas–van Alphen effect and Fermi surface of LaB6 . J. Phys. Soc. Jpn 42, 112–118 (1977).

    ADS  Article  Google Scholar 

  15. 15

    Harima, H., Sakai, O., Kasuya, T. & Yanase, A. New interpretation of the de Haas–van Alphen signals of LaB6 . Solid State Commun. 66, 603–607 (1988).

    ADS  Article  Google Scholar 

  16. 16

    Ōnuki, Y., Komatsubara, T., Reinders, P. H. P. & Springford, M. Fermi surface and cyclotron mass of CeB6 . J. Phys. Soc. Jpn 58, 3698–3704 (1989).

    ADS  Article  Google Scholar 

  17. 17

    Gabáni, S. et al. Properties of the in-gap states in SmB6 . Solid State Commun. 117, 641–644 (2001).

    ADS  Article  Google Scholar 

  18. 18

    Caldwell, T. et al. High-field suppression of in-gap states in the Kondo insulator SmB6 . Phys. Rev. B 75, 075106 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Carter, G. C., Bennett, L. H. & Kahan, D. Metallic Shifts in NMR: A Review of the Theory and Comprehensive Critical Data Compilation of Metallic Materials (Pergamon, 1977).

    Google Scholar 

  20. 20

    Flachbart, K. et al. Specific heat of SmB6 at very low temperatures. Physica B 378, 610–611 (2006).

    ADS  Article  Google Scholar 

  21. 21

    Biswas, P. K. et al. Low-temperature magnetic fluctuations in the Kondo insulator SmB6 . Phys. Rev. B 89, 161107 (2014).

    ADS  Article  Google Scholar 

  22. 22

    Fuhrman, W. T. et al. Interaction driven subgap spin exciton in the Kondo insulator SmB6 . Phys. Rev. Lett. 114, 036401 (2015).

    ADS  Article  Google Scholar 

  23. 23

    Yamashita, M. et al. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Yamashita, M., Shibauchi, T. & Matsuda, Y. Thermal-transport studies on two-dimensional quantum spin liquids. ChemPhysChem 13, 74–78 (2012).

    Article  Google Scholar 

  25. 25

    Yamashita, S. et al. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nat. Phys. 4, 459–462 (2008).

    Article  Google Scholar 

  26. 26

    Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M. & Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2, 275 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Anderson, P. Breaking the log-jam in many-body physics: Fermi surfaces without Fermi liquids. Phys. Scr. T42, 11–16 (1992).

    ADS  Article  Google Scholar 

  28. 28

    Grover, T., Trivedi, N., Senthil, T. & Lee, P. A. Weak Mott insulators on the triangular lattice: possibility of a gapless nematic quantum spin liquid. Phys. Rev. B 81, 245121 (2010).

    ADS  Article  Google Scholar 

  29. 29

    Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to κ-(ET)2Cu2(CN)3 . Phys. Rev. B 73, 155115 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    ADS  Article  Google Scholar 

  32. 32

    Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).

    ADS  Article  Google Scholar 

  33. 33

    Erten, O., Ghaemi, P. & Coleman, P. Kondo breakdown and quantum oscillations in SmB6 . Phys. Rev. Lett. 116, 046403 (2016).

    ADS  Article  Google Scholar 

  34. 34

    Thomson, A. & Sachdev, S. Fractionalized Fermi liquid on the surface of a topological Kondo insulator. Phys. Rev. B 93, 125103 (2016).

    ADS  Article  Google Scholar 

  35. 35

    Paul, I., Pépin, C. & Norman, M. Kondo breakdown and hybridization fluctuations in the Kondo–Heisenberg lattice. Phys. Rev. Lett. 98, 026402 (2007).

    ADS  Article  Google Scholar 

  36. 36

    Xu, Y. et al. Bulk Fermi surface of charge-neutral excitations in SmB6 or not: a heat-transport study. Phys. Rev. Lett. 116, 246403 (2016).

    ADS  Article  Google Scholar 

  37. 37

    Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators-theory of thermodynamic and transport anomalies in SmB6 . Phys. Rev. Lett. 118, 096604 (2017).

    ADS  Article  Google Scholar 

  38. 38

    Pixley, J., Yu, R., Paschen, S. & Si, Q. Global phase diagram and momentum distribution of single-particle excitations in Kondo insulators. Preprint at (2015).

  39. 39

    Kagan, Y., Kikion, K. & Prokof’ev, N. Heavy fermions in the Kondo lattice as neutral quasiparticles. Physica B 182, 201–208 (1992).

    ADS  Article  Google Scholar 

  40. 40

    Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi-surfaces. Preprint at (2017).

  41. 41

    Coleman, P., Miranda, E. & Tsvelik, A. Are Kondo insulators gapless? Physica B 186, 362–364 (1993).

    ADS  Article  Google Scholar 

  42. 42

    Baskaran, G. Majorana Fermi sea in insulating SmB6: a proposal and a theory of quantum oscillations in Kondo insulators. Preprint at (2015).

  43. 43

    Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    ADS  Article  Google Scholar 

  44. 44

    Bulaevskii, L., Batista, C., Mostovoy, M. & Khomskii, D. Electronic orbital currents and polarization in Mott insulators. Phys. Rev. B 78, 024402 (2008).

    ADS  Article  Google Scholar 

  45. 45

    Laurita, N. J. et al. Anomalous three-dimensional bulk AC conduction within the Kondo gap of SmB6 single crystals. Phys. Rev. B 94, 165154 (2016).

    ADS  Article  Google Scholar 

  46. 46

    Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Preprint at (2017).

  47. 47

    Phelan, W. et al. On the chemistry and physical properties of flux and floating zone grown SmB6 single crystals. Sci. Rep. 6, 20860 (2016).

    ADS  Article  Google Scholar 

  48. 48

    Steglich, F. et al. Quantum critical phenomena in undoped heavy-fermion metals. J. Phys. Condens. Matter 8, 9909–9921 (1996).

    ADS  Article  Google Scholar 

  49. 49

    Wen, X.-G. Topological order: from long-range entangled quantum matter to a unified origin of light and electrons. ISRN Condens. Matter Phys. 2013, 198710 (2013).

    Article  Google Scholar 

  50. 50

    Zaanen, J., Liu, Y., Sun, Y.-W. & Schalm, K. Holographic Duality in Condensed Matter Physics (Cambridge Univ. Press, 2015).

    Book  Google Scholar 

  51. 51

    Iga, F., Kasaya, M. & Kasuya, T. Specific heat measurements of YbB12 and YbxLu1−xB12 . J. Magn. Magn. Mater. 76, 156–158 (1988).

    ADS  Article  Google Scholar 

  52. 52

    Maple, M. & Wohlleben, D. Nonmagnetic 4f shell in the high-pressure phase of SmS. Phys. Rev. Lett. 27, 511–515 (1971).

    ADS  Article  Google Scholar 

  53. 53

    Ōnuki, Y., Nishihara, M., Sato, M. & Komatsubara, T. Fermi surface and cyclotron mass of PrB6 . J. Magn. Magn. Mater. 52, 317–319 (1985).

    ADS  Article  Google Scholar 

  54. 54

    Smith, H. et al. Experimental study of lattice dynamics in LaB6 and YbB6 . Solid State Commun. 53, 15–19 (1985).

    ADS  Article  Google Scholar 

  55. 55

    Capponi, S. & Assaad, F. Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-filled Kondo lattice model. Phys. Rev. B 63, 155114 (2001).

    ADS  Article  Google Scholar 

  56. 56

    Gold, A. The de Haas–van Alphen effect. Solid State Phys. Electron. Metals 1968, 39–126 (1968).

    Google Scholar 

  57. 57

    Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  58. 58

    Harrison, N., Meeson, P., Probst, P.-A. & Springford, M. Quasiparticle and thermodynamic mass in the heavy-fermion system CeB6 . J. Phys. Condens. Matter 5, 7435 (1993).

    ADS  Article  Google Scholar 

  59. 59

    Mandrus, D. et al. Low-temperature thermal expansion of SmB6: evidence for a single energy scale in the thermodynamics of Kondo insulators. Phys. Rev. B 49, 16809–16812 (1994).

    ADS  Article  Google Scholar 

  60. 60

    Valentine, M. E. et al. An effect of Sm vacancies on the hybridization gap in topological Kondo insulator candidate SmB6 . SCES Proc. (2017).

  61. 61

    Martin, B. & Heer, C. Heat Capacity of α-manganese from 0.2 to 0.4° K. Phys. Rev. 173, 631–634 (1968).

    ADS  Article  Google Scholar 

  62. 62

    Nishiyama, K. et al. Pressure-induced localization of 4f electrons in the intermediate valence compound SmB6 . J. Phys. Soc. Jpn 82, 123707 (2013).

    ADS  Article  Google Scholar 

  63. 63

    Sera, M., Kobayashi, S., Hiroi, M., Kobayashi, N. & Kunii, S. Thermal conductivity of RB6 (R = Ce, Pr, Nd, Sm, Gd) single crystals. Phys. Rev. B 54, R5207–R5210 (1996).

    ADS  Article  Google Scholar 

  64. 64

    Berman, R., Foster, E. & Ziman, J. Thermal conduction in artificial sapphire crystals at low temperatures. I. Nearly perfect crystals. Proc. R. Soc. Lond. A 231, 130–144 (1955).

    ADS  Article  Google Scholar 

  65. 65

    Smith, M. F., Paglione, J., Walker, M. B. & Taillefer, L. Origin of anomalous low-temperature downturns in the thermal conductivity of cuprates. Phys. Rev. B 71, 014506 (2005).

    ADS  Article  Google Scholar 

  66. 66

    Nave, C. P. & Lee, P. A. Transport properties of a spinon Fermi surface coupled to a U(1) gauge field. Phys. Rev. B 76, 235124 (2007).

    ADS  Article  Google Scholar 

  67. 67

    Pal, H. K. Quantum oscillations from inside the Fermi sea. Phys. Rev. B 95, 085111 (2017).

    ADS  Article  Google Scholar 

  68. 68

    Varma, P. S. & Das, T. Quantum oscillations from open ‘Fermi surface in quasi-one-dimensional lattices: application to YBa2Cu3O6 cuprates, organic salts, ladder compounds, and related systems. Preprint at (2016).

  69. 69

    Sun, L. & Wu, Q. Puzzle maker in SmB6: accompany-type valence fluctuation state. Preprint at (2016).

  70. 70

    Ram, P. & Kumar, B. Theory of quantum oscillations of magnetization in Kondo insulators. Phys. Rev. B 96, 075115 (2017).

    ADS  Article  Google Scholar 

  71. 71

    Pal, H. K. Unusual frequency of quantum oscillations in strongly particle–hole asymmetric insulators. Preprint at (2017).

  72. 72

    Lee, S.-S. & Lee, P. A. U(1) gauge theory of the Hubbard model: spin liquid states and possible application to κ-(BEDT- TTF)2Cu2(CN)3 . Phys. Rev. Lett. 95, 036403 (2005).

    ADS  Article  Google Scholar 

  73. 73

    Mross, D. F. & Senthil, T. Charge Friedel oscillations in a Mott insulator. Phys. Rev. B 84, 041102 (2011).

    ADS  Article  Google Scholar 

  74. 74

    Pal, H. K., Piéchon, F., Fuchs, J.-N., Goerbig, M. & Montambaux, G. Chemical potential asymmetry and quantum oscillations in insulators. Phys. Rev. B 94, 125140 (2016).

    ADS  Article  Google Scholar 

  75. 75

    Ramos, E., Franco, R., Silva-Valencia, J., Foglio, M. E. & Figueira, M. S. The role of short-range magnetic correlations in the gap opening of topological Kondo insulators. J. Phys. Condens. Matter 29, 345601 (2017).

    Article  Google Scholar 

  76. 76

    Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003).

    ADS  Article  Google Scholar 

  77. 77

    Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    ADS  Article  Google Scholar 

  78. 78

    Coleman, P., Marston, J. B. & Schofield, A. J. Transport anomalies in a simplified model for a heavy-electron quantum critical point. Phys. Rev. B 72, 245111 (2005).

    ADS  Article  Google Scholar 

Download references


M.H., Y.-T.H., G.R.-G., J.B., M.K.K., G.H.Z. and S.E.S. acknowledge support from the Royal Society, the Winton Programme for the Physics of Sustainability, EPSRC (studentship and grant number EP/P024947/1) and the European Research Council under the European Unions Seventh Framework Programme (grant number FP/2007-2013)/ERC Grant Agreement number 337425. S.E.S. acknowledges support from the Leverhulme Trust by way of the award of a Philip Leverhulme Prize. Work done by W.H.T. and R.W.H. was funded by NSERC of Canada. Q.R.Z., B.Z. and L.B. acknowledge support from DOE-BES through award DE-SC0002613. X.C. and M.S. acknowledge support from Corpus Christi College, Cambridge and EPSRC. M.C.H. and G.B. would like to acknowledge financial support from the EPSRC, UK through Grants EP/M028771/1 and EP/L014963/1. Work done by S.N. and T.S. was supported by a Grant-in-Aid for Scientific Research on Innovative Areas ‘J-Physics’ (15H05883) and KAKENHI (15H03682) from MEXT. M.K.C. and N.H. acknowledge support from the US Department of Energy, Office of Science, BESMSE Science of 100 Tesla program. S.Y. acknowledges support from Grant-in-Aid for Scientific Research JP16K05447. G.G.L. acknowledges support from EPSRC grant EP/K012894/1. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida and the DOE. We acknowledge discussions with many colleagues, including M. Aronson, G. Baskaran, P.-Y. Chang, D. Chowdhury, P. Coleman, N. R. Cooper, M. P. M. Dean, O. Erten, J. Flouquet, J. Knolle, N. J. Laurita, P. A. Lee, P. B. Littlewood, V. F. Mitrović, J. E. Moore, T. P. Murphy, M. Norman, C. Pépin, S. Sachdev, T. Senthil, Q. Si, A. M. Tsvelik and C. Varma. We are grateful for the experimental support provided by the NHMFL, Tallahassee, including J. Billings, R. Carrier, E. S. Choi, B. L. Dalton, D. Freeman, L. J. Gordon, M. Hicks, S. A. Maier, J. N. Piotrowski, J. A. Powell and E. Stiers.

Author information




M.H., Y.-T.H., B.Z., Q.R.Z., G.R.-G., J.B., M.K.K., G.H.Z., M.K.C., J.-H.P., L.B., N.H. and S.E.S. performed high-magnetic-field measurements. W.H.T., X.C., R.W.H. and M.S. performed thermal transport measurements. M.C.H., G.B., N.S., J.B., G.R.-G. and Y.-T.H. prepared single crystals. S.N. and T.S. performed Faraday magnetometry measurements. A.S.P., S.Y. and Y.T. performed heat capacity measurements. All authors contributed to data analysis. S.E.S., M.S. and R.W.H. conceived the project. S.E.S. supervised the project and wrote the manuscript with M.H. and with contributions from all the authors.

Corresponding authors

Correspondence to M. Sutherland or Suchitra E. Sebastian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 707 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartstein, M., Toews, W., Hsu, YT. et al. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys. 14, 166–172 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing