Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing electronic binding potentials with attosecond photoelectron wavepackets

Abstract

The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoionization in a laser-dressed continuum and illustration of the RABBITT+ scheme.
Figure 2: Atomic parameters extracted from RABBITT+ measurements.
Figure 3: Pseudo-potential relevant to energy transfer in a laser-dressed continuum.
Figure 4: Classical energy transfer in laser-dressed Coulomb potentials.

Similar content being viewed by others

References

  1. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  2. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  3. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  4. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  5. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    Article  ADS  Google Scholar 

  6. Kienberger, R. et al. Steering attosecond electron wave packets with light. Science 297, 1144–1148 (2002).

    Article  ADS  Google Scholar 

  7. Drescher, M. et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

    Article  ADS  Google Scholar 

  8. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  9. Johnsson, P. et al. Attosecond electron wave packet dynamics in strong laser fields. Phys. Rev. Lett. 95, 013001 (2005).

    Article  ADS  Google Scholar 

  10. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  11. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  12. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    Article  ADS  Google Scholar 

  13. Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    Article  ADS  Google Scholar 

  14. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  15. Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    Article  ADS  Google Scholar 

  16. Niikura, H., Wörner, H. J., Villeneuve, D. M. & Corkum, P. B. Probing the spatial structure of a molecular attosecond electron wave packet using shaped recollision trajectories. Phys. Rev. Lett. 107, 093004 (2011).

    Article  ADS  Google Scholar 

  17. Gruson, V. et al. Attosecond dynamics through a fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016).

    Article  ADS  Google Scholar 

  18. van Linden van den Heuvell, H. B. & Muller, H. G. Limiting cases of excess-photon ionization. in Multiphoton Processes: Proc. 4th Int. Conf. Multiphoton Processes (eds Smith, S. & Knight, P.) 25–34 (Cambridge Univ. Press, 1988).

    Google Scholar 

  19. Gallagher, T. F. Above-threshold ionization in low-frequency limit. Phys. Rev. Lett. 61, 2304–2307 (1988).

    Article  ADS  Google Scholar 

  20. Corkum, P. B., Burnett, N. H. & Brunel, F. Above-threshold ionization in the long-wavelength limit. Phys. Rev. Lett. 62, 1259–1262 (1989).

    Article  ADS  Google Scholar 

  21. Su, J., Ni, H., Becker, A. & Jaroń-Becker, A. Attosecond-streaking time delays: finite-range property and comparison of classical and quantum approaches. Phys. Rev. A 89, 013404 (2014).

    Article  ADS  Google Scholar 

  22. Shuman, E. S., Jones, R. R. & Gallagher, T. F. Multiphoton assisted recombination. Phys. Rev. Lett. 101, 263001 (2008).

    Article  ADS  Google Scholar 

  23. Overstreet, K. R., Jones, R. R. & Gallagher, T. F. Phase-dependent electron–ion recombination in a microwave field. Phys. Rev. Lett. 106, 033002 (2011).

    Article  ADS  Google Scholar 

  24. Zhang, C.-H. & Thumm, U. Electron–ion interaction effects in attosecond time-resolved photoelectron spectra. Phys. Rev. A 82, 043405 (2010).

    Article  ADS  Google Scholar 

  25. Véniard, V., Taïeb, R. & Maquet, A. Phase dependence of (n + 1)-color (n > 1) IR–UV photoionization of atoms with higher harmonics. Phys. Rev. A 54, 721–728 (1996).

    Article  ADS  Google Scholar 

  26. Muller, H. G. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B 74, s17–s21 (2002).

    Article  ADS  Google Scholar 

  27. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft x-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  28. Muller, H. G., van Linden van den Heuvell, H. B. & van der Wiel, M. J. Dressing of continuum states after MPI of Xe in a two-colour experiment. J. Phys. B 19, L733–L739 (1986).

    Article  ADS  Google Scholar 

  29. Guénot, D. et al. Measurements of relative photoemission time delays in noble gas atoms. J. Phys. B 47, 245602 (2014).

    Article  ADS  Google Scholar 

  30. Sabbar, M. et al. Resonance effects in photoemission time delays. Phys. Rev. Lett. 115, 133001 (2015).

    Article  ADS  Google Scholar 

  31. Huppert, M., Jordan, I., Baykusheva, D., von Conta, A. & Wörner, H. J. Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016).

    Article  ADS  Google Scholar 

  32. Palatchi, C. et al. Atomic delay in helium, neon, argon and krypton. J. Phys. B 47, 245003 (2014).

    Article  ADS  Google Scholar 

  33. Schoun, S. B. et al. Attosecond pulse shaping around a Cooper minimum. Phys. Rev. Lett. 112, 153001 (2014).

    Article  ADS  Google Scholar 

  34. Pazourek, R., Nagele, S. & Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 87, 765–802 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  35. Ivanov, M. & Smirnova, O. How accurate is the attosecond streak camera? Phys. Rev. Lett. 107, 213605 (2011).

    Article  ADS  Google Scholar 

  36. Nagele, S. et al. Time-resolved photoemission by attosecond streaking: extraction of time information. J. Phys. B 44, 081001 (2011).

    Article  ADS  Google Scholar 

  37. Dahlström, J. M., L’Huillier, A. & Maquet, A. Introduction to attosecond delays in photoionization. J. Phys. B 45, 183001 (2012).

    Article  Google Scholar 

  38. Su, J., Ni, H., Becker, A. & Jaroń-Becker, A. Numerical simulation of time delays in light-induced ionization. Phys. Rev. A 87, 033420 (2013).

    Article  ADS  Google Scholar 

  39. Kheifets, A. S., Bray, A. W. & Bray, I. Attosecond time delay in photoemission and electron scattering near threshold. Phys. Rev. Lett. 117, 143202 (2016).

    Article  ADS  Google Scholar 

  40. Mauritsson, J., Gaarde, M. B. & Schafer, K. J. Accessing properties of electron wave packets generated by attosecond pulse trains through time-dependent calculations. Phys. Rev. A 72, 013401 (2005).

    Article  ADS  Google Scholar 

  41. Kruit, P. & Read, F. H. Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier. J. Phys. E 16, 313–324 (1983).

    Article  ADS  Google Scholar 

  42. Cooper, J. W. Photoionization from outer atomic subshells. A model study. Phys. Rev. 128, 681–693 (1962).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.F.D. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award #DE-FG02-04ER15614. R.R.J. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Awards #DE-FG02-00ER15053 (initial measurements and theory) and #DE-SC0012462 (analysis and manuscript preparation).

Author information

Authors and Affiliations

Authors

Contributions

D.K. performed the measurements, reduced the experimental data, and developed/performed the analysis and numerical simulations. R.R.J. conceived the experiments and analytical approach, provided guidance during the data analysis, and assisted with the initial measurements. S.B.S. and A.C. assisted with the experimental set-up and data collection. L.F.D. and P.A. provided key insights and supervision during the experiments and analysis. D.K., R.R.J. and L.F.D. prepared the manuscript, which was discussed among all authors.

Corresponding author

Correspondence to R. R. Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiesewetter, D., Jones, R., Camper, A. et al. Probing electronic binding potentials with attosecond photoelectron wavepackets. Nature Phys 14, 68–73 (2018). https://doi.org/10.1038/nphys4279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4279

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing