Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Curvature-induced defect unbinding and dynamics in active nematic toroids

Abstract

Nematic order on curved surfaces is often disrupted by the presence of topological defects, which are singular regions in which the orientational order is undefined. In the presence of force-generating active materials, these defects are able to migrate through space like swimming microorganisms. We use toroidal surfaces to show that despite their highly chaotic and non-equilibrium dynamics, pairs of defects unbind and segregate in regions of opposite Gaussian curvature. Using numerical simulations, we find that the degree of defect unbinding can be controlled by tuning the system activity, and even suppressed in strongly active systems. Furthermore, by using the defects as active microrheological tracers and quantitatively comparing our experimental and theoretical results, we are able to determine material properties of the active nematic. Our results illustrate how topology and geometry can be used to control the behaviour of active materials, and introduce a new avenue for the quantitative mechanical characterization of active fluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Curvature-induced defect unbinding for a nematic on the surface of a torus.
Figure 2: Quantifying curvature-induced defect unbinding for an active nematic confined to the surface of a toroidal droplet.
Figure 3: Numerical simulations show that curvature-induced defect unbinding for active nematics is sensitive to defect velocity and defect density.
Figure 4: Defect number fluctuations depend on defect velocity.

Similar content being viewed by others

References

  1. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  2. Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41, 121–124 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  3. Young, A. P. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19, 1855–1866 (1979).

    Article  ADS  Google Scholar 

  4. Zapotocky, M., Ramos, L., Poulin, P., Lubensky, T. C. & Weitz, D. A. Particle-stabilized defect gel in cholesteric liquid crystals. Science 283, 209–212 (1999).

    Article  Google Scholar 

  5. Wood, T. A., Lintuvuori, J. S., Schofield, A. B., Marenduzzo, D. & Poon, W. C. K. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science 334, 79–83 (2011).

    Article  ADS  Google Scholar 

  6. Nelson, D. R. Toward a tetravalent chemistry of colloids. Nano. Lett. 2, 1125–1129 (2002).

    Article  ADS  Google Scholar 

  7. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  ADS  Google Scholar 

  8. Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    Article  ADS  Google Scholar 

  9. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    ADS  Google Scholar 

  10. Giomi, L. & DeSimone, A. Spontaneous division and motility in active nematic droplets. Phys. Rev. Lett. 112, 147802 (2014).

    Article  ADS  Google Scholar 

  11. Doostmohammadi, A., Thampi, S. P. & Yeomans, J. M. Defect-mediated morphologies in growing cell colonies. Phys. Rev. Lett. 117, 048102 (2016).

    Article  ADS  Google Scholar 

  12. Saw, T. B. et al. Topological defects in epithelia govern cell death and extrusion. Nature 544, 212–216 (2017).

    Article  ADS  Google Scholar 

  13. Bowick, M. J. & Giomi, L. Two-dimensional matter: order, curvature and defects. Adv. Phys. 58, 449–563 (2009).

    Article  ADS  Google Scholar 

  14. Lubensky, T. & Prost, J. Orientational order and vesicle shape. J. Phys. II 2, 371–382 (1992).

    Google Scholar 

  15. Lopez-Leon, T., Koning, V., Devaiah, K. B. S., Vitelli, V. & Fernandez-Nieves, A. Frustrated nematic order in spherical geometries. Nat. Phys. 7, 391–394 (2011).

    Article  Google Scholar 

  16. Kamien, R. D. The geometry of soft materials: a primer. Rev. Mod. Phys. 74, 953–971 (2002).

    Article  ADS  Google Scholar 

  17. Bowick, M. J., Nelson, D. R. & Travesset, A. Interacting topological defects on frozen topographies. Phys. Rev. B 62, 8738–8751 (2000).

    Article  ADS  Google Scholar 

  18. Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).

    Article  ADS  Google Scholar 

  19. Lipowsky, P., Bowick, M. J., Meinke, J. H., Nelson, D. R. & Bausch, A. R. Direct visualization of dislocation dynamics in grain-boundary scars. Nat. Mat. 4, 407–411 (2005).

    Article  Google Scholar 

  20. Fernández-Nieves, A. et al. Novel defect structures in nematic liquid crystal shells. Phys. Rev. Lett. 99, 157801 (2007).

    Article  ADS  Google Scholar 

  21. Brojan, M., Terwagne, D., Lagrange, R. & Reis, P. M. Wrinkling crystallography on spherical surfaces. Proc. Natl Acad. Sci. USA 112, 14–19 (2015).

    Article  ADS  Google Scholar 

  22. Darmon, A. et al. Waltzing route toward double-helix formation in cholesteric shells. Proc. Natl Acad. Sci. USA 113, 9469–9474 (2016).

    Article  ADS  Google Scholar 

  23. Kelleher, C. P., Guerra, R. E., Hollingsworth, A. D. & Chaikin, P. M. Phase behavior of charged colloids at a fluid interface. Phys. Rev. E 95, 022602 (2017).

    Article  ADS  Google Scholar 

  24. Bowick, M. J., Giomi, L., Shin, H. & Thomas, C. K. Bubble-raft model for a paraboloidal crystal. Phys. Rev. E 77, 021602 (2008).

    Article  ADS  Google Scholar 

  25. Irvine, W. T. M., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

    Article  ADS  Google Scholar 

  26. Burke, C. J., Mbanga, B. L., Wei, Z., Spicer, P. T. & Atherton, T. J. The role of curvature anisotropy in the ordering of spheres on an ellipsoid. Soft Matt. 11, 5872–5882 (2015).

    Article  ADS  Google Scholar 

  27. Bowick, M., Nelson, D. R. & Travesset, A. Curvature-induced defect unbinding in toroidal geometries. Phys. Rev. E 69, 041102 (2004).

    Article  ADS  Google Scholar 

  28. Giomi, L. & Bowick, M. Elastic theory of defects in toroidal crystals. Eur. Phys. J. E 27, 275–296 (2008).

    Google Scholar 

  29. Jesenek, D., Kralj, S., Rosso, R. & Virga, E. G. Defect unbinding on a toroidal nematic shell. Soft Matt. 11, 2434–2444 (2015).

    Article  ADS  Google Scholar 

  30. Aditi Simha, R. & Ramaswamy, S. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002).

    Article  ADS  Google Scholar 

  31. Edwards, S. & Yeomans, J. Spontaneous flow states in active nematics: a unified picture. Euro. Phys. Lett. 85, 18008 (2009).

    Article  ADS  Google Scholar 

  32. Giomi, L. Geometry and topology of turbulence in active nematics. Phys. Rev. X 5, 031003 (2015).

    Google Scholar 

  33. Guillamat, P., Ignés-Mullol, J., Shankar, S., Marchetti, M. C. & Sagués, F. Probing the shear viscosity of an active nematic film. Phys. Rev. E 94, 060602 (2016).

    Article  ADS  Google Scholar 

  34. Zhou, S., Sokolov, A., Lavrentovich, O. D. & Aranson, I. S. Living liquid crystals. Proc. Natl Acad. Sci. USA 111, 1265–1270 (2014).

    Article  ADS  Google Scholar 

  35. DeCamp, S. J., Redner, G. S., Baskaran, A., Hagan, M. F. & Dogic, Z. Orientational order of motile defects in active nematics. Nat. Mater. 14, 1110–1115 (2015).

    Article  ADS  Google Scholar 

  36. Giomi, L., Bowick, M. J., Ma, X. & Marchetti, M. C. Defect annihilation and proliferation in active nematics. Phys. Rev. Lett. 110, 228101 (2013).

    Article  ADS  Google Scholar 

  37. Giomi, L., Bowick, M. J., Mishra, P., Sknepnek, R. & Marchetti, M. C. Defect dynamics in active nematics. Phil. Trans. R. Soc. A 372, 20130365 (2014).

    Article  ADS  Google Scholar 

  38. Giomi, L. & Bowick, M. J. Defective ground states of toroidal crystals. Phys. Rev. E 78, 010601 (2008).

    Article  ADS  Google Scholar 

  39. Travesset, A. Structure of curved crystals in the thermodynamic limit and the perfect screening condition. Phys. Rev. E 94, 063001 (2016).

    Article  ADS  Google Scholar 

  40. Pairam, E., Le, H. & Fernández-Nieves, A. Stability of toroidal droplets inside yield stress materials. Phys. Rev. E 90, 021002 (2014).

    Article  ADS  Google Scholar 

  41. Weickert, J. Coherence-enhancing diffusion filtering. Int. J. Comp. Vis. 31, 111–127 (1999).

    Article  Google Scholar 

  42. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Oxford Univ. Press, 1995).

    Book  Google Scholar 

  43. Delaunay, B. Sur la sphere vide. Izv. Akad. Nauk SSSR Otd. Mat. Est. Nauk 7, 1–2 (1934).

    MATH  Google Scholar 

  44. Geman, S. & McClure, D. E. Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. LII, 5–21 (1987).

    MathSciNet  Google Scholar 

  45. Kalogerakis, E., Simari, P., Nowrouzezahrai, D. & Singh, K. Robust statistical estimation of curvature on discretized surfaces. Symp. Geo. Proc. 13–22 (2007).

  46. Kalogerakis, E., Nowrouzezahrai, D., Simari, P. & Singh, K. Extracting lines of curvature from noisy point clouds. Comput. Aided Des. 41, 282–292 (2009).

    Article  Google Scholar 

  47. Kreyszig, E. Differential Geometry (Dover Publications, 1959).

    Book  Google Scholar 

  48. Shabnam, S., DasGupta, S. & Roy, S. K. Existence of a line of critical points in a two-dimensional Lebwohl Lasher model. Phys. Lett. A 380, 667–671 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  49. Fily, Y., Baskaran, A. & Hagan, M. F. Dynamics of self-propelled particles under strong confinement. Soft Matt. 10, 5609–5617 (2014).

    Article  ADS  Google Scholar 

  50. Guillamat, P., Ignés-Mullol, J. & Sagués, F. Control of active liquid crystals with a magnetic field. Proc. Natl Acad. Sci. USA 113, 5498–5502 (2016).

    Article  ADS  Google Scholar 

  51. Whittaker, E. T. & Watson, G. N. A Course of Modern Analysis (Cambridge Univ. Press, 1996).

    Book  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation for support (NSF 1609841). We also thank Z. Dogic and acknowledge use of Brandeis Biological Materials Facility, which is supported by NSF MRSEC DMR-1420382. We are thankful to S. DeCamp and K. Wu for their training and assistance with the active system, and P. Yunker for the use of his confocal microscope. P.W.E. is supported by FLAMEL under grant NSF 1258425. D.J.P. and L.G. are supported by The Netherlands Organization for Scientific Research (NWO/OCW) via the Frontiers of Nanoscience program and the Vidi scheme.

Author information

Authors and Affiliations

Authors

Contributions

A.F.N. initially designed the experiment. P.W.E. and Y.W.C. performed the experiments. D.J.P. and L.G. performed the numerical simulations. P.W.E., D.J.P., G.G., L.G. and A.F.N. analysed and interpreted the data. P.W.E., D.J.P., L.G. and A.F.N. wrote the paper.

Corresponding authors

Correspondence to Luca Giomi or Alberto Fernandez-Nieves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 635 kb)

Supplementary Movie

Supplementary Movie 1 (MP4 4101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, P., Pearce, D., Chang, YW. et al. Curvature-induced defect unbinding and dynamics in active nematic toroids. Nature Phys 14, 85–90 (2018). https://doi.org/10.1038/nphys4276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing