Review Article | Published:

Emergent functions of quantum materials

Nature Physics volume 13, pages 10561068 (2017) | Download Citation

This article has been updated

Abstract

Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence—collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 17 October 2017

    In the version of this Review originally published, the notes accompanying refs 4, 6, 7, 10, 15, 39, 53, 57, 59, 64, 65, 67, 73, 93, 105, 112 and 125 were missing. This has now been corrected.

References

  1. 1.

    More is different. Science 177, 393–396 (1972).

  2. 2.

    & Theory of polarization of crystalline solids. Phys. Rev. B 47, R1651–R1654 (1993).

  3. 3.

    Macroscopic electric polarization as a geometric quantum phase. Europhys. Lett. 22, 133–138 (1993).

  4. 4.

    Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).  The original paper of Berry phase revealing the geometrical nature of quantum mechanics.

  5. 5.

    Correlated-electron physics in transition-metal oxides. Phys. Today 56, 50–55 (July, 2003).

  6. 6.

    , & Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).  A review on the physics of strong electron correlation andMott transition including many experimental results.

  7. 7.

    , & Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).  A review on theories and experiments on cuprates superconductors from the viewpoint of strong electron correlation.

  8. 8.

    et al. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = l, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994).

  9. 9.

    , , & High pressure effects revisited for the cuprate superconductor family with highest critical temperature. Nat. Commun. 6, 8990 (2015).

  10. 10.

    , , , & Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).  The report on the experimental discovery of superconductivity in sulfur hydride under high pressure with the highest transition temperature at present.

  11. 11.

    , & Overview of materials and power applications of coated conductors project. Jpn. J. Appl. Phys. 51, 010007 (2012).

  12. 12.

    , & Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems. Jpn. J. Appl. Phys. 51, 010006 (2012).

  13. 13.

    & Recent developments in SQUID NDE. Physica C 368, 70–79 (2002).

  14. 14.

    & Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

  15. 15.

    Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).  The review article on colossal magnetoresistance in manganites providing the explanation of its physical mechanisms.

  16. 16.

    et al. Striction-coupled magnetoresistance in perovskite-type manganese oxides. Science 272, 80–82 (1996).

  17. 17.

    , , & Visualization of the local insulator–metal transition in Pr0.7Ca0.3MnO3. Science 280, 1925–1928 (1998).

  18. 18.

    et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012).

  19. 19.

    et al. Suppression of metal–insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

  20. 20.

    et al. Infrared-sensitive electrochromic device based on VO2. Appl. Phys. Lett. 103, 153503 (2013).

  21. 21.

    & Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

  22. 22.

    Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (June 2008).

  23. 23.

    , , & Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004).

  24. 24.

    , & Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

  25. 25.

    Photoinduced phase transition: A tool for generating a hidden state of matter. J. Phys. Soc. Jpn 75, 011001 (2006).

  26. 26.

    et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

  27. 27.

    et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

  28. 28.

    On the magneto-electrical effect in antiferromagnets. Sov. Phys. JETP 10, 628–629 (1959).

  29. 29.

    The magnetoelectric effect in antiferromagnets. Sov. Phys. JETP 11, 708–709 (1960).

  30. 30.

    GaFeO3; a ferromagneteic-piezoelectric compound. J. Appl. Phys. 31, 263S–264S (1960).

  31. 31.

    et al. Structural and magnetoelectric properties of Ga2−xFexO3 single crystals grown by a floating-zone method. Phys. Rev. B 70, 064426 (2004).

  32. 32.

    , & Doping-tunable ferrimagnetic phase with large linear magnetoelectric effect in a polar magnet Fe2Mo3O8. Phys. Rev. X 5, 031034 (2015).

  33. 33.

    , & Multferroics: past, present, and future. Phys. Today 63, 38–43 (October, 2010).

  34. 34.

    Multiferroics as quantum electromagnets. Science 312, 1481–1482 (2006).

  35. 35.

    Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

  36. 36.

    & Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

  37. 37.

    & Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

  38. 38.

    Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005).

  39. 39.

    , & Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).  A review on multiferroics of spin origin systematically classifying the mechanisms for variety of materials.

  40. 40.

    Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn 76, 073702 (2007).

  41. 41.

    et al. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 8, 558–562 (2009).

  42. 42.

    , , & Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838–844 (2012).

  43. 43.

    , , , & Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41. Phys. Rev. Lett. 106, 087201 (2011).

  44. 44.

    et al. Electric field control of nonvolatile four-state magnetization at room temperature. Phys. Rev. Lett. 108, 177201 (2012).

  45. 45.

    , & Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

  46. 46.

    , & Terahertz magnetoelectric resonance enhanced by mutual coupling of electromagnons. Phys. Rev. Lett. 111, 037204 (2013).

  47. 47.

    , & Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).

  48. 48.

    et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006).

  49. 49.

    , & Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 132701 (2005).

  50. 50.

    , , , & Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643–1646 (2008).

  51. 51.

    et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011).

  52. 52.

    , & Gigantic optical magnetoelectric effect in CuB2O4. J. Phys. Soc. Jpn 77, 013705 (2008).

  53. 53.

    , & Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).  A review article on Berry phase based on the semiclassical wavepacket formalism that includes many applications, most of which are to condensed matter physics.

  54. 54.

    , , , & Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

  55. 55.

    , , , & Spin chirality, Berry phase and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

  56. 56.

    et al. Magnetic field induced sign reversal of the anomalous Hall effect in a pyrochlore ferromagnet Nd2Mo2O7: evidence for a spin chirality mechanism. Phys. Rev. Lett. 90, 257202 (2003).

  57. 57.

    & Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).  A review article on the skyrmions and their dynamics in magnets from the viewpoint of topology and emergent electromagnetism due to Berry phase.

  58. 58.

    et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12, 62–66 (2016).

  59. 59.

    et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).  An experiment to observe the emergent electromagnetic induction in terms of the Hall effect in skyrmion system.

  60. 60.

    et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

  61. 61.

    , & Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions. Phil. Trans. R. Soc. A 370, 5806–5819 (2012).

  62. 62.

    et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

  63. 63.

    & Energy bands in the presence of an external force field–II. Anomalous velocities. J. Phys. Chem. Solids 10, 286–303 (1959).

  64. 64.

    & The Quantum Hall Effect (Springer, 1987).  A comprehensive textbook on the quantum Hall effect summarizing the knowledge up to that time.

  65. 65.

    , & New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).  The original experimental paper of integer quantum Hall effect, which opened up the researches on topological properties of electrons in solids.

  66. 66.

    & Spin Hall effect. Comprehensive Semiconductor Science and Technology Vol. 1, 222–278 (Elsevier, 2011).

  67. 67.

    , , & Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).  The original theory paper connecting the topological number to the Hall conductance so-called TKNN formula.

  68. 68.

    et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

  69. 69.

    et al. Weyl fermions and spin dynamics of metallic SrRuO3. Nat. Commun. 7, 11788 (2016).

  70. 70.

    & Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

  71. 71.

    , , , & The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

  72. 72.

    & A no-go theorem for regularizing chiral fermions. Phys. Lett. B105, 219–223 (1981).

  73. 73.

    , , & Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).  Prediction of theWeyl semimetal in pyrochlore iridates, which triggered the intensive researches onWeyl fermion.

  74. 74.

    & Path Integrals and Quantum Anomalies (International Series of Monographs on Physics, Oxford Univ. Press, 2004).

  75. 75.

    , & Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

  76. 76.

    et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

  77. 77.

    , & Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

  78. 78.

    & Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

  79. 79.

    , & Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

  80. 80.

    et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

  81. 81.

    & Rotational motion of magnons and the thermal Hall effect. Phys. Rev. B 84, 184406 (2011).

  82. 82.

    et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

  83. 83.

    et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

  84. 84.

    et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

  85. 85.

    et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

  86. 86.

    , , , & Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).

  87. 87.

    & First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

  88. 88.

    et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

  89. 89.

    et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

  90. 90.

    , & Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

  91. 91.

    & Profile of David J. Thouless, J. Michael Kosterlitz, and F. Duncan M. Haldane, 2016 Nobel Laureates in Physics. Proc. Natl Acad. Sci. USA 114, 626–628 (2017).

  92. 92.

    & The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (January, 2010).

  93. 93.

    & Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).  A comprehensive review article on topological insulators for general readership.

  94. 94.

    & Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  95. 95.

    , , & Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

  96. 96.

    Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

  97. 97.

    , , , & Control over topological insulator photocurrents with light polarization. Nat. Nanotech. 7, 96–100 (2012).

  98. 98.

    et al. Enhanced photogalvanic current in topological insulators via Fermi energy tuning. Phys. Rev. B 93, 081403(R) (2016).

  99. 99.

    & Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

  100. 100.

    Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

  101. 101.

    et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

  102. 102.

    Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

  103. 103.

    & Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals. Phys. Rev. Lett. 90, 206601 (2003).

  104. 104.

    et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

  105. 105.

    et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).  Experimental discovery of the quantized anomalous Hall effect in magnetic topological insulators under zero magnetic field.

  106. 106.

    et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

  107. 107.

    et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 773–477 (2015).

  108. 108.

    & Electric charging of magnetic textures on the surface of a topological insulator. Phys. Rev. B 82, 161401(R) (2010).

  109. 109.

    , & Thin film dilute ferromagnetic semiconductors Sb2−xCrxTe3 with a Curie temperature up to 190 K. Phys Rev. B 74, 224418 (2006).

  110. 110.

    et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

  111. 111.

    et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

  112. 112.

    , & Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).  Field theoretical treatment of topological insulators and predictions of their physical properties.

  113. 113.

    & Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

  114. 114.

    , , & Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010).

  115. 115.

    et al. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nat. Commun. 7, 12245 (2016).

  116. 116.

    et al. A magnetic heterostructure of topological insulators: a candidate for axion insulator. Nat. Mater. 16, 516–521 (2017).

  117. 117.

    et al. Memory functions of magnetic skyrmions. Jpn. J. Appl. Phys. 54, 053001 (2015).

  118. 118.

    et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

  119. 119.

    et al. Critical phenomena of emergent magnetic monopoles in a chiral magnet. Nat. Commun. 7, 11622 (2016).

  120. 120.

    Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

  121. 121.

    & Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

  122. 122.

    , & Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

  123. 123.

    , & Topological quantum computation. Phys. Today 59, 32–38 (July, 2006).

  124. 124.

    Unpaired Majorana fermions in quantum wires. Proc. Mesoscopic Strongly Correlated Electron Systems Conference (9–16 July 2000, Chernogolovka, Moscow Region, Russia);

  125. 125.

    et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).  Early experimental report on the Majorana bound state at the ends of a semiconductor nanowire with spin-orbit interaction on a superconductor.

  126. 126.

    et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

  127. 127.

    , & Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009).

  128. 128.

    , & Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

  129. 129.

    , , , & Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

  130. 130.

    Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

  131. 131.

    New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

  132. 132.

    , , , & Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

  133. 133.

    & Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

  134. 134.

    & Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

  135. 135.

    , & Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

  136. 136.

    Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–203 (1989).

  137. 137.

    et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

  138. 138.

    et al. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11, 347–351 (2015).

  139. 139.

    & Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

  140. 140.

    & Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals. Phys. Rev. B 94, 035117 (2016).

Download references

Acknowledgements

The authors would like to thank M. Uchida, M. Ishida and C. Terakura for their help in preparing the manuscript.

Author information

Affiliations

  1. RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

    • Yoshinori Tokura
    • , Masashi Kawasaki
    •  & Naoto Nagaosa
  2. Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

    • Yoshinori Tokura
    • , Masashi Kawasaki
    •  & Naoto Nagaosa

Authors

  1. Search for Yoshinori Tokura in:

  2. Search for Masashi Kawasaki in:

  3. Search for Naoto Nagaosa in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Yoshinori Tokura.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys4274

Further reading