Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergent functions of quantum materials

This article has been updated


Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence—collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Concepts in quantum materials.
Figure 2: Electronic phase control of correlated-electron materials.
Figure 3: Multiferroics of spin origin and their magnetoelectric responses.
Figure 4: Emergent magnetic field associated with the non-collinear spin configuration and its consequent physical phenomenon.
Figure 5: Emergent electromagnetic field in momentum space.
Figure 6: Quantum phenomena observed in topological insulator heterostructures.
Figure 7: Emergent electromagnetism in real space.
Figure 8: Majorana fermions in topological superconductors and fractional quantum Hall systems.

Change history

  • 17 October 2017

    In the version of this Review originally published, the notes accompanying refs 4, 6, 7, 10, 15, 39, 53, 57, 59, 64, 65, 67, 73, 93, 105, 112 and 125 were missing. This has now been corrected.


  1. 1

    Anderson, P. W. More is different. Science 177, 393–396 (1972).

    ADS  Article  Google Scholar 

  2. 2

    King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, R1651–R1654 (1993).

    Article  ADS  Google Scholar 

  3. 3

    Resta, R. Macroscopic electric polarization as a geometric quantum phase. Europhys. Lett. 22, 133–138 (1993).

    Article  ADS  Google Scholar 

  4. 4

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).  The original paper of Berry phase revealing the geometrical nature of quantum mechanics.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. 5

    Tokura, Y. Correlated-electron physics in transition-metal oxides. Phys. Today 56, 50–55 (July, 2003).

    Article  Google Scholar 

  6. 6

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).  A review on the physics of strong electron correlation andMott transition including many experimental results.

    Article  ADS  Google Scholar 

  7. 7

    Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).  A review on theories and experiments on cuprates superconductors from the viewpoint of strong electron correlation.

    Article  ADS  Google Scholar 

  8. 8

    Gao, L. et al. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = l, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994).

    Article  ADS  Google Scholar 

  9. 9

    Yamamoto, A., Takeshita, N., Terakura, C. & Tokura, Y. High pressure effects revisited for the cuprate superconductor family with highest critical temperature. Nat. Commun. 6, 8990 (2015).

    Article  ADS  Google Scholar 

  10. 10

    Drozdov, A. P., Eremets, M. I., Trojan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).  The report on the experimental discovery of superconductivity in sulfur hydride under high pressure with the highest transition temperature at present.

    ADS  Article  Google Scholar 

  11. 11

    Shinohara, Y., Taneda, T. & Yoshizumi, M. Overview of materials and power applications of coated conductors project. Jpn. J. Appl. Phys. 51, 010007 (2012).

    Article  ADS  Google Scholar 

  12. 12

    Sato, K., Kobayashi, S. & Nakashima, T. Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems. Jpn. J. Appl. Phys. 51, 010006 (2012).

    Article  ADS  Google Scholar 

  13. 13

    Krause, H.-J. & Kreutzbruck, M. V. Recent developments in SQUID NDE. Physica C 368, 70–79 (2002).

    Article  ADS  Google Scholar 

  14. 14

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    Article  ADS  Google Scholar 

  15. 15

    Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797–851 (2006).  The review article on colossal magnetoresistance in manganites providing the explanation of its physical mechanisms.

    Article  ADS  Google Scholar 

  16. 16

    Kuwahara, H. et al. Striction-coupled magnetoresistance in perovskite-type manganese oxides. Science 272, 80–82 (1996).

    Article  ADS  Google Scholar 

  17. 17

    Fiebig, M., Miyano, K., Tomioka, T. & Tokura, Y. Visualization of the local insulator–metal transition in Pr0.7Ca0.3MnO3 . Science 280, 1925–1928 (1998).

    Article  ADS  Google Scholar 

  18. 18

    Nakano, M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012).

    Article  ADS  Google Scholar 

  19. 19

    Jeong, J. et al. Suppression of metal–insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  ADS  Google Scholar 

  20. 20

    Nakano, M. et al. Infrared-sensitive electrochromic device based on VO2 . Appl. Phys. Lett. 103, 153503 (2013).

    Article  ADS  Google Scholar 

  21. 21

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    Article  ADS  Google Scholar 

  22. 22

    Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (June 2008).

    Article  Google Scholar 

  23. 23

    Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004).

    Article  ADS  Google Scholar 

  24. 24

    Liu, S. Q., Wu, N. J. & Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).

    Article  ADS  Google Scholar 

  25. 25

    Tokura, Y. Photoinduced phase transition: A tool for generating a hidden state of matter. J. Phys. Soc. Jpn 75, 011001 (2006).

    Article  ADS  Google Scholar 

  26. 26

    Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

    Article  ADS  Google Scholar 

  27. 27

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  ADS  Google Scholar 

  28. 28

    Dzyaloshinskii, I. E. On the magneto-electrical effect in antiferromagnets. Sov. Phys. JETP 10, 628–629 (1959).

    MathSciNet  Google Scholar 

  29. 29

    Astrov, D. N. The magnetoelectric effect in antiferromagnets. Sov. Phys. JETP 11, 708–709 (1960).

    Google Scholar 

  30. 30

    Remeika, J. P. GaFeO3; a ferromagneteic-piezoelectric compound. J. Appl. Phys. 31, 263S–264S (1960).

    Article  ADS  Google Scholar 

  31. 31

    Arima, T. et al. Structural and magnetoelectric properties of Ga2−xFexO3 single crystals grown by a floating-zone method. Phys. Rev. B 70, 064426 (2004).

    Article  ADS  Google Scholar 

  32. 32

    Kurumaji, T., Ishiwata, S. & Tokura, Y. Doping-tunable ferrimagnetic phase with large linear magnetoelectric effect in a polar magnet Fe2Mo3O8 . Phys. Rev. X 5, 031034 (2015).

    Google Scholar 

  33. 33

    Spaldin, N. A., Cheong, S.-W. & Ramesh, R. Multferroics: past, present, and future. Phys. Today 63, 38–43 (October, 2010).

    Article  Google Scholar 

  34. 34

    Tokura, Y. Multiferroics as quantum electromagnets. Science 312, 1481–1482 (2006).

    Article  Google Scholar 

  35. 35

    Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

    Article  Google Scholar 

  36. 36

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  ADS  Google Scholar 

  37. 37

    Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  Google Scholar 

  38. 38

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005).

    Article  ADS  Google Scholar 

  39. 39

    Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).  A review on multiferroics of spin origin systematically classifying the mechanisms for variety of materials.

    Article  ADS  Google Scholar 

  40. 40

    Arima, T. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn 76, 073702 (2007).

    Article  ADS  Google Scholar 

  41. 41

    Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 8, 558–562 (2009).

    Article  ADS  Google Scholar 

  42. 42

    Tokunaga, Y., Taguchi, Y., Arima, T. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838–844 (2012).

    Article  Google Scholar 

  43. 43

    Soda, M., Ishikura, T., Nakamura, H., Wakabayashi, Y. & Kimura, T. Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41 . Phys. Rev. Lett. 106, 087201 (2011).

    Article  ADS  Google Scholar 

  44. 44

    Chun, S.-H. et al. Electric field control of nonvolatile four-state magnetization at room temperature. Phys. Rev. Lett. 108, 177201 (2012).

    Article  ADS  Google Scholar 

  45. 45

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  ADS  Google Scholar 

  46. 46

    Takahashi, Y., Yamasaki, Y. & Tokura, Y. Terahertz magnetoelectric resonance enhanced by mutual coupling of electromagnons. Phys. Rev. Lett. 111, 037204 (2013).

    Article  ADS  Google Scholar 

  47. 47

    Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).

    Article  ADS  Google Scholar 

  48. 48

    Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006).

    Article  Google Scholar 

  49. 49

    Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 132701 (2005).

    Google Scholar 

  50. 50

    Ishiwata, S., Taguchi, Y., Murakawa, H., Onose, Y. & Tokura, Y. Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643–1646 (2008).

    Article  ADS  Google Scholar 

  51. 51

    Kézsmárki, I. et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011).

    Article  ADS  Google Scholar 

  52. 52

    Saito, M., Taniguchi, K. & Arima, T. Gigantic optical magnetoelectric effect in CuB2O4 . J. Phys. Soc. Jpn 77, 013705 (2008).

    Article  ADS  Google Scholar 

  53. 53

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).  A review article on Berry phase based on the semiclassical wavepacket formalism that includes many applications, most of which are to condensed matter physics.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. 54

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  55. 55

    Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article  ADS  Google Scholar 

  56. 56

    Taguchi, Y. et al. Magnetic field induced sign reversal of the anomalous Hall effect in a pyrochlore ferromagnet Nd2Mo2O7: evidence for a spin chirality mechanism. Phys. Rev. Lett. 90, 257202 (2003).

    Article  ADS  Google Scholar 

  57. 57

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).  A review article on the skyrmions and their dynamics in magnets from the viewpoint of topology and emergent electromagnetism due to Berry phase.

    Article  ADS  Google Scholar 

  58. 58

    Oike, H. et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12, 62–66 (2016).

    Article  Google Scholar 

  59. 59

    Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).  An experiment to observe the emergent electromagnetic induction in terms of the Hall effect in skyrmion system.

    Article  Google Scholar 

  60. 60

    Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

    Article  ADS  Google Scholar 

  61. 61

    Nagaosa, N., Yu, X. Z. & Tokura, Y. Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions. Phil. Trans. R. Soc. A 370, 5806–5819 (2012).

    Article  ADS  Google Scholar 

  62. 62

    Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  ADS  Google Scholar 

  63. 63

    Adams, E. N. & Blount, E. I. Energy bands in the presence of an external force field–II. Anomalous velocities. J. Phys. Chem. Solids 10, 286–303 (1959).

    Article  ADS  MATH  Google Scholar 

  64. 64

    Prange, R. E. & Girvin, S. M. The Quantum Hall Effect (Springer, 1987).  A comprehensive textbook on the quantum Hall effect summarizing the knowledge up to that time.

    Book  Google Scholar 

  65. 65

    Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).  The original experimental paper of integer quantum Hall effect, which opened up the researches on topological properties of electrons in solids.

    Article  ADS  Google Scholar 

  66. 66

    Murakami, S. & Nagaosa, N. Spin Hall effect. Comprehensive Semiconductor Science and Technology Vol. 1, 222–278 (Elsevier, 2011).

    Chapter  Google Scholar 

  67. 67

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).  The original theory paper connecting the topological number to the Hall conductance so-called TKNN formula.

    Article  ADS  Google Scholar 

  68. 68

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article  ADS  Google Scholar 

  69. 69

    Itoh, S. et al. Weyl fermions and spin dynamics of metallic SrRuO3 . Nat. Commun. 7, 11788 (2016).

    Article  ADS  Google Scholar 

  70. 70

    Vafek, O. & Vishwanath, A. Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    Article  ADS  Google Scholar 

  71. 71

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  72. 72

    Nielsen, H. B. & Ninomiya, M. A no-go theorem for regularizing chiral fermions. Phys. Lett. B105, 219–223 (1981).

    Article  ADS  Google Scholar 

  73. 73

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).  Prediction of theWeyl semimetal in pyrochlore iridates, which triggered the intensive researches onWeyl fermion.

    Article  ADS  Google Scholar 

  74. 74

    Fujikawa, K. & Suzuki, H. Path Integrals and Quantum Anomalies (International Series of Monographs on Physics, Oxford Univ. Press, 2004).

    Book  MATH  Google Scholar 

  75. 75

    Fukushima, K., Kharzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

    Article  ADS  Google Scholar 

  76. 76

    Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  77. 77

    Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article  ADS  Google Scholar 

  78. 78

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  79. 79

    Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

    Article  ADS  Google Scholar 

  80. 80

    Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

    Article  ADS  Google Scholar 

  81. 81

    Matsumoto, R. & Murakami, S. Rotational motion of magnons and the thermal Hall effect. Phys. Rev. B 84, 184406 (2011).

    Article  ADS  Google Scholar 

  82. 82

    Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    Article  ADS  Google Scholar 

  83. 83

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  ADS  Google Scholar 

  84. 84

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  85. 85

    de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article  ADS  Google Scholar 

  86. 86

    Bhatnagar, A., Chaudhuri, A. R., Kim, Y. H., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3 . Nat. Commun. 4, 2835 (2013).

    Article  ADS  Google Scholar 

  87. 87

    Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    Article  ADS  Google Scholar 

  88. 88

    Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  ADS  Google Scholar 

  89. 89

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  ADS  Google Scholar 

  90. 90

    Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  91. 91

    Fisher, M. E. & Nagaosa, N. Profile of David J. Thouless, J. Michael Kosterlitz, and F. Duncan M. Haldane, 2016 Nobel Laureates in Physics. Proc. Natl Acad. Sci. USA 114, 626–628 (2017).

    Article  Google Scholar 

  92. 92

    Qi, X.-L. & Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (January, 2010).

    Article  Google Scholar 

  93. 93

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).  A comprehensive review article on topological insulators for general readership.

    Article  ADS  Google Scholar 

  94. 94

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  95. 95

    Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article  ADS  Google Scholar 

  96. 96

    Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  ADS  Google Scholar 

  97. 97

    Mclver, K. W., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gecik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotech. 7, 96–100 (2012).

    Article  ADS  Google Scholar 

  98. 98

    Okada, K. N. et al. Enhanced photogalvanic current in topological insulators via Fermi energy tuning. Phys. Rev. B 93, 081403(R) (2016).

    Article  ADS  Google Scholar 

  99. 99

    Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    ADS  Google Scholar 

  100. 100

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  101. 101

    Kondou, K. et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

    Article  Google Scholar 

  102. 102

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  103. 103

    Onoda, M. & Nagaosa, N. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals. Phys. Rev. Lett. 90, 206601 (2003).

    Article  ADS  Google Scholar 

  104. 104

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  105. 105

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).  Experimental discovery of the quantized anomalous Hall effect in magnetic topological insulators under zero magnetic field.

    Article  ADS  Google Scholar 

  106. 106

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article  Google Scholar 

  107. 107

    Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 773–477 (2015).

    Article  ADS  Google Scholar 

  108. 108

    Nomura, K. & Nagaosa, N. Electric charging of magnetic textures on the surface of a topological insulator. Phys. Rev. B 82, 161401(R) (2010).

    Article  ADS  Google Scholar 

  109. 109

    Zhou, Z., Chien, Y.-J. & Uher, C. Thin film dilute ferromagnetic semiconductors Sb2−xCrxTe3 with a Curie temperature up to 190 K. Phys Rev. B 74, 224418 (2006).

    Article  ADS  Google Scholar 

  110. 110

    Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3 . Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

    Article  ADS  Google Scholar 

  111. 111

    Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    Article  ADS  Google Scholar 

  112. 112

    Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).  Field theoretical treatment of topological insulators and predictions of their physical properties.

    Article  ADS  Google Scholar 

  113. 113

    Tse, W. K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    Article  ADS  Google Scholar 

  114. 114

    Maciejko, J., Qi, X.-L., Drew, H. D. & Zhang, S.-C. Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010).

    Article  ADS  Google Scholar 

  115. 115

    Okada, K. N. et al. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nat. Commun. 7, 12245 (2016).

    Article  ADS  Google Scholar 

  116. 116

    Mogi, M. et al. A magnetic heterostructure of topological insulators: a candidate for axion insulator. Nat. Mater. 16, 516–521 (2017).

    Article  ADS  Google Scholar 

  117. 117

    Koshibae, W. et al. Memory functions of magnetic skyrmions. Jpn. J. Appl. Phys. 54, 053001 (2015).

    Article  ADS  Google Scholar 

  118. 118

    Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  ADS  Google Scholar 

  119. 119

    Kanazawa, N. et al. Critical phenomena of emergent magnetic monopoles in a chiral magnet. Nat. Commun. 7, 11622 (2016).

    Article  ADS  Google Scholar 

  120. 120

    Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  121. 121

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  122. 122

    Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    Article  ADS  Google Scholar 

  123. 123

    Sarma, S. D., Freedman, M. & Nayak, C. Topological quantum computation. Phys. Today 59, 32–38 (July, 2006).

    Article  Google Scholar 

  124. 124

    Kitaev, A. Unpaired Majorana fermions in quantum wires. Proc. Mesoscopic Strongly Correlated Electron Systems Conference (9–16 July 2000, Chernogolovka, Moscow Region, Russia);

  125. 125

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).  Early experimental report on the Majorana bound state at the ends of a semiconductor nanowire with spin-orbit interaction on a superconductor.

    Article  ADS  Google Scholar 

  126. 126

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  ADS  Google Scholar 

  127. 127

    Akhmerov, A. R., Nilsson, J. & Beenakker, C. W. J. Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009).

    Article  ADS  Google Scholar 

  128. 128

    Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

    Article  ADS  Google Scholar 

  129. 129

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  130. 130

    Ivanov, A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article  ADS  Google Scholar 

  131. 131

    Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  132. 132

    Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

    Article  Google Scholar 

  133. 133

    Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  134. 134

    Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  135. 135

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  136. 136

    Jain, J. K. Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199–203 (1989).

    Article  ADS  Google Scholar 

  137. 137

    Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

    Article  ADS  Google Scholar 

  138. 138

    Falson, J. et al. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11, 347–351 (2015).

    Article  Google Scholar 

  139. 139

    Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  ADS  Google Scholar 

  140. 140

    Morimoto, T. & Nagaosa, N. Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals. Phys. Rev. B 94, 035117 (2016).

    Article  ADS  Google Scholar 

Download references


The authors would like to thank M. Uchida, M. Ishida and C. Terakura for their help in preparing the manuscript.

Author information



Corresponding author

Correspondence to Yoshinori Tokura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nature Phys 13, 1056–1068 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing