Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoemission of quantum materials

The emergent phenomena that characterize quantum materials have received prominent exposure thanks to experimental techniques based on photoemission. In turn, the challenges and opportunities presented by quantum materials have driven improvements in the photoemission technology itself.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photoemission experiments on cuprates.
Figure 2: Photoemission experiments on iron-based superconductors.
Figure 3: Photoemission experiments on topological insulators.

References

  1. 1

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Rev. Mod. Phys. 75, 473–541 (2003).

    ADS  Article  Google Scholar 

  2. 2

    Hüfner, S. Photoelectron Spectroscopy: Principles and Applications 3rd edn (Springer, 2003).

    Book  Google Scholar 

  3. 3

    Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Nat. Phys. 10, 483–495 (2014).

    Article  Google Scholar 

  4. 4

    Shen, Z.-X. et al. Phys. Rev. Lett. 70, 1553–1556 (1993).

    ADS  Article  Google Scholar 

  5. 5

    Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Phys. Rev. Lett. 71, 2134–2137 (1993).

    ADS  Article  Google Scholar 

  6. 6

    Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, R. & Zhang, K. Phys. Rev Lett. 70, 3999–4002 (1993).

    ADS  Article  Google Scholar 

  7. 7

    Batlogg, B. et al. Physica C Supercond. 235–240, 130–133 (1994).

  8. 8

    Loeser, A. G. et al. Science 273, 325–329 (1996).

    ADS  Article  Google Scholar 

  9. 9

    Ding, H. et al. Nature 382, 51–54 (1996).

    ADS  Article  Google Scholar 

  10. 10

    Kondo, T. et al. Nat. Phys. 7, 21–25 (2011).

    Article  Google Scholar 

  11. 11

    Kanigel, A. et al. Nat. Phys. 2, 447–451 (2006).

    Article  Google Scholar 

  12. 12

    Tanaka, K. et al. Science 314, 1910–1913 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Lee, W. S. et al. Nature 450, 81–84 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Kiss, T. et al. Rev. Sci. Instrum. 79, 023106 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Vishik, I. M. et al. Proc. Natl Acad. Sci. USA 109, 18332–18337 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Richard, P., Sato, T., Nakayama, K., Takahashi, T. & Ding, H. Rep. Prog. Phys. 74, 124512 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Kordyuk, A. A. Low Temp. Phys. 38, 888–899 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Dagotto, E. Rev. Mod. Phys. 85, 849–867 (2013).

    ADS  Article  Google Scholar 

  19. 19

    Si, Q., Yu, R. & Abrahams, E. Nat. Rev. Mater. 1, 16017 (2016).

    ADS  Article  Google Scholar 

  20. 20

    Yang, F., Wang, F. & Lee, D.-H. Phys. Rev. B 88, 100504 (2013).

    ADS  Article  Google Scholar 

  21. 21

    Fernandes, R. M., Chubukov A. V., & Schmalian, J. Nat. Phys. 10, 97–104 (2014).

    Article  Google Scholar 

  22. 22

    Ding, H. et al. Europhys. Lett. 83, 47001 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Rep. Prog. Phys. 74, 124508 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Wang, Q.-Y. et al. Chin. Phys. Lett. 29, 037402 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Bozovic, I. & Ahn, C. Nat. Phys. 10, 892–895 (2014).

    Article  Google Scholar 

  26. 26

    Huang, D. & Hoffman, J. E. Annu. Rev. Condens. Matter Phys. 8, 311–336 (2017).

    ADS  Article  Google Scholar 

  27. 27

    Monkman, E. J. et al. Nat. Mater. 11, 855–859 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Lee, J. J. et al. Nature 515, 245–248 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Jia, S., Xu, S.-Y. & Hasan, M. Z. Nat. Mater. 15, 1140–1144 (2016).

    ADS  Article  Google Scholar 

  30. 30

    Xia, Y. et al. Nat. Phys. 5, 398–402 (2009).

    Article  Google Scholar 

  31. 31

    Chen, Y. L. et al. Science 325, 178–181 (2009).

    ADS  Article  Google Scholar 

  32. 32

    Hsieh, D. et al. Nature 460, 1101–1105 (2009).

    ADS  Article  Google Scholar 

  33. 33

    Wang, Y. H. et al. Phys. Rev. Lett. 107, 207602 (2011).

    ADS  Article  Google Scholar 

  34. 34

    Okuda, T. et al. Rev. Sci. Instrum. 79, 123117 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Koralek, J. D. et al. Phys. Rev. Lett. 96, 017005 (2006).

    ADS  Article  Google Scholar 

  36. 36

    Mathias, S. et al. in Dynamics at Solid State Surfaces and Interfaces Vol. 1 (eds Bovensiepen, U., Petek, H. & Wolf, M.) Ch. 21 (Wiley, 2010).

    Google Scholar 

  37. 37

    Rohwer, T. et al. Nature 471, 490–493 (2011).

    ADS  Article  Google Scholar 

  38. 38

    Wang, H. et al. Nat. Commun. 6, 7459 (2015).

    ADS  Article  Google Scholar 

  39. 39

    Smallwood, C. L. Kaindl, R. A. & Lanzara, A. Europhys. Lett. 115, 27001 (2016).

    ADS  Article  Google Scholar 

  40. 40

    Wang, Y. H. et al. Phys. Rev. Lett. 109, 127401 (2012).

    ADS  Article  Google Scholar 

  41. 41

    Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Science 342, 453–457 (2013).

    ADS  Article  Google Scholar 

  42. 42

    Mahmood, F. et al. Nat. Phys. 12, 306–310 (2016).

    Article  Google Scholar 

  43. 43

    Lindner, N. H., Refael, G. & Galitski, V. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  44. 44

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Nat. Phys. http://doi.org/10.1038/nphys4274 (2017).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions and proofreading from Suyang Xu and Ming Yi.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuh Gedik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gedik, N., Vishik, I. Photoemission of quantum materials. Nature Phys 13, 1029–1033 (2017). https://doi.org/10.1038/nphys4273

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing