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Quantum computers have the 
potential to dramatically 
outperform classical computers 

at solving certain problems. However, 
despite impressive experimental progress, 
practical quantum computers remain a 
long-term goal. A simpler objective is 
to build a quantum device that merely 
outperforms classical computers, if only 
for a toy problem. Boson sampling is 
perhaps the best-known framework for 
establishing such a result, yet it remains 
unclear at what size it becomes classically 
intractable. Previous estimates have 
placed this threshold around 30 bosons. 
Writing in Nature Physics, Alex Neville 
and co-authors1 give strong evidence that 
the threshold for classically hard boson 
sampling is at least this high — and that 
boson-sampling experiments will need to 
exceed approximately 50 photons to push 
quantum computation beyond the reach of 
our present classical abilities.

In boson sampling, single photons are 
prepared, sent through a linear optical 
network consisting of beam splitters and 
phase shifters, and finally measured with 
detectors that can resolve individual 
photons. Although such a linear optics 
experiment cannot perform universal 
quantum computation — it cannot run 
Shor’s celebrated factoring algorithm, 
for example — it has been argued that 
sampling from its output distribution 
(even approximately) is hard for classical 
computers2. Since realizing linear optics is 
easier than performing a general quantum 
computation, boson sampling offers a 
gentler path to demonstrating a quantum 
computational advantage.

So far, experiments have performed 
boson sampling with up to five photons3. 
Extending them to more photons is 
challenging for many reasons, not least of 
which is the difficulty of reliably creating 
several single-photon states that arrive at 
the detectors simultaneously. This raises a 
natural question: just how large an instance 
of boson sampling must one consider such 
that a classical computer cannot solve it in 
a reasonable amount of time?

Unfortunately, even the asymptotic 
hardness of boson sampling is unclear. 
Arguments for its intractability rely on 
unproven conjectures in both linear algebra 
(about the distribution of permanents of 
matrices with Gaussian-distributed entries) 
and computational complexity theory. But 
for concrete instances of boson sampling, 
we are interested in a more mundane — yet 
slipperier — question: how long would the 
best possible classical algorithm take to 
sample from the output distribution? This 
is challenging to answer, as there are many 
possible approaches to simulating boson 
sampling with a classical computer.

The algorithm presented by 
Neville et al. is based on a technique 
called Metropolised independence 
sampling, which apparently reproduces 
the boson sampling distribution much 
more efficiently than brute-force 
calculation of the full distribution. 
Roughly speaking, the algorithm runs 
a Markov chain whose stationary 
distribution corresponds to boson 
sampling. Random steps in the Markov 
chain are first proposed by drawing from 
the distribution corresponding to classical 
distinguishable particles — which can be 
sampled efficiently — and then accepted 
with a probability that depends on the 
chance of making such a transition with 
indistinguishable bosons. Empirically, 
this Markov chain appears to converge 
to the boson-sampling distribution after 
a number of steps that grows slowly with 

the number of bosons, suggesting that 
the overall cost should be dominated by 
the cost of determining whether to accept 
each step. While that is a computationally 
demanding task, it can be done with 
an algorithm of Ryser’s4 that takes time 
growing only exponentially with the 
number of bosons. Using this approach, 
the authors generate samples from the 
20-photon distribution using a laptop and 
from the 30-photon distribution using a 
cluster of four off-the-shelf computers. 
Furthermore, they estimate that sampling 
from the 50-photon distribution should be 
within reach of a supercomputer.

One shortcoming of the sampling 
algorithm of Neville et al. is that it does not 
come with a guarantee of correctness. The 
Markov chain should be run long enough 
that it provides a good approximation of 
the boson-sampling distribution. However, 
it is challenging to determine whether 
this is the case, precisely because it is hard 
to sample from the desired distribution. 
The authors address this issue in several 
ways. They show that the output of their 
Metropolised independence-sampling 
procedure agrees with a brute-force 
calculation for very small sizes, and 
they find that it agrees with a different, 
less-efficient Markov chain method for 
somewhat larger sizes. They also show that 
the distribution they sample from is far 
from the distribution of distinguishable 
particles — a necessary, but far from 
sufficient, condition. But because boson-
sampling experiments also suffer from the 
same challenge of verifying correctness of 
the output distribution, it seems reasonable 
to accept this limitation.

Considering the difficulty of scaling 
up single-photon experiments, the results 
of Neville et al. suggest that it could be 
quite some time before boson sampling is 
used to demonstrate a definitive quantum 
advantage. However, it is possible that 
another way of asserting quantum 
computational advantage will be even 
easier to realize. Numerous alternative 
sampling problems have been proposed, 
including the so-called instantaneous 
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quantum polynomial-time model, sampling 
the output of random quantum circuits, 
and analogues of boson sampling in spin 
systems5. Other tasks such as quantum 
simulation6 and approximate optimization7 
are also promising candidates for early 
implementation. Progress towards building 
quantum processors continues apace, 
so demonstrations of super-classical 
computation may be viable in the relatively 
near term. However it is eventually 

achieved, quantum computation that 
exceeds the reach of classical computers 
will be an exciting development that begins 
a new era of quantum science. ❐
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In the canonical picture, self-assembly 
results in an arrangement where identical 
building blocks fit together, like a jigsaw 

puzzle, into a complementary pattern 
stabilized by non-covalent attractions 
between neighbours (Fig. 1a). The uniform 
distribution of cohesive energy in the 
interior, together with the drive to minimize 
cohesive loss at the surface, leads to a single 
morphology in the condensed state: the 
macroscopic aggregate. But a minimal model, 
reported in Nature Physics by Martin Lenz 
and Thomas Witten1, shows that assembly 
of ill-fitting, or geometrically frustrated, 
elements breaks this basic paradigm — 
yielding multiple distinct morphologies, 
including assemblies with finite and well-
defined multi-element dimensions.

Geometric frustration refers to the 
incompatibility of local interactions with 
global geometric constraints2, making 
the propagation of uniform and strain-
free order impossible. Although it’s most 
commonly associated with bulk materials3 
such as antiferromagnets and hard-sphere 
glasses, geometric frustration has important 
and lesser-known implications for self-
assembling structures whose dimensions are 
variable and possibly finite.

As an illustration, consider the assembly 
of the misshapen puzzle pieces shown in 
Fig. 1b. The warp of the piece does not 
prevent pairwise fit of any neighbours, which 
we take as a proxy for cohesive interactions. 
But in this example the tapered shape favours 
bent 1D rows of the puzzle that lead to 
geometric conflicts when trying to extend the 

structure in 2D. It is intuitive, for example, 
to imagine that one will have deform the 
pieces in the 2×2 unit shown in Fig. 1b — not 
unlike a determined puzzle enthusiast forcing 
the wrong pieces together. In the context of 
the assembly problem, the energetic cost of 
deformation required to extend the cohesive 
fit over an arbitrary size distinguishes 
geometrically frustrated assembly from the 
canonical process.

The resulting structure, thermodynamics 
and kinetics of geometrically frustrated 
assemblies are far less understood than 
the standard unfrustrated cases4. To date, 
geometric frustration has been implicated 
as an a posteriori mechanism to explain 
structures found in a diverse range of 
systems, including phase-separated lipid 
vesicles5, particle coated droplets6, viral 
capsids7, chiral membranes8,9 and protein 
filament bundles10. A primary motivation for 
Lenz and Witten’s study is the assembly of 
protein building blocks, whose complex and 
sometimes irregular tertiary folded structures 
often require some measure of shape strain to 
form multi-protein architectures.

Lenz and Witten simulated the cohesive 
2D assembly of flexible polygons whose 
shapes cannot tile the plane: pentagons, 
heptagons and irregular hexagons. Their 
model considered the sequential addition 
of polygonal blocks to an existing cluster in 
order to maximize the net energetic of gain 
of assembly: the increased cohesion, which 
is proportional to the number of newly 
contacting edges, minus the elastic cost to 
deform block edges into contact.

In their model, unlike the unfrustrated 
case, in which block shapes tile space without 
deformation, incompatible blocks exhibited 
three distinct morphologies (Fig. 1c). In the 
limiting case of rigid blocks, they found that 
assemblies were tree- or branched polymer-
like with a large fraction of unbound edges. 
In the opposite extreme of very floppy 
blocks, they found that cohesive gain was 
sufficient to deform blocks into a compatible 
shape that assembles without bound 
in any dimension, albeit with a slightly 
reduced energetic gain per block. At the 
boundary between these two regimes, where 
deformation cost roughly balances cohesive 
gain, they found a surprising intermediate 
state of fibre-like assemblies, where blocks 
assemble into fairly regular finite-width 
domains, and continue to assemble unabated 
in a quasi-1D fashion by growth along the 
short dimension.

What is so remarkable about this fibre 
formation is that the assembly proceeds to 
a particular finite width that is larger than a 
single block (in the range ~4−8 depending 
on the conditions) — and yet it is less 
than infinite. It is as if the process has a 
mechanism to ‘measure’ the finite width of 
the assembly, despite the lack of any long-
range interactions in the model.

What, then, accounts for the size 
selection of the assembly? This effect 
seems to derive from the dual roles played 
by the free boundaries of the assembly. 
As in canonical assemblies, boundaries 
lead to a deficit of cohesive contacts. But 
for frustrated assemblies, they also lead 
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