Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser amplification in excited dielectrics

Abstract

Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump–probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of laser amplification in excited dielectrics (LADIE).
Figure 2: Temporal dynamics of LADIE in excited sapphire.
Figure 3: Pump-fluence dependence of LADIE in sapphire 500 fs after excitation.
Figure 4: Probe-fluence dependence of LADIE in excited sapphire 500 fs after excitation.
Figure 5: Excitation and amplification mechanism and results of numerical simulations.

Similar content being viewed by others

References

  1. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    Article  ADS  Google Scholar 

  2. Chung, S. H. & Mazur, E. Surgical applications of femtosecond lasers. J. Biophotonics 2, 557–572 (2009).

    Article  Google Scholar 

  3. Shen, Y. R. Electrostriction, optical Kerr effect and self-focusing of laser beams. Phys. Lett. 20, 378–380 (1966).

    Article  ADS  Google Scholar 

  4. Islam, M. N., Simpson, J. R., Shang, H. T., Mollenauer, L. F. & Stolen, R. H. Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627 (1987).

    Article  ADS  Google Scholar 

  5. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  6. Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B: At. Mol. Opt. Phys. 43, 163001 (2010).

    Article  ADS  Google Scholar 

  7. Mermillod-Blondin, A. et al. Time-resolved imaging of laser-induced refractive index changes in transparent media. Rev. Sci. Instrum. 82, 33703 (2011).

    Article  Google Scholar 

  8. Rapp, L. et al. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 6, 7555 (2015).

    Article  ADS  Google Scholar 

  9. Balling, P. & Schou, J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep. Prog. Phys. 76, 36502 (2013).

    Article  Google Scholar 

  10. Sarpe, C., Köhler, J., Winkler, T., Wollenhaupt, M. & Baumert, T. Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses. New J. Phys. 14, 75021 (2012).

    Article  Google Scholar 

  11. Winkler, T. et al. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses. Experiments and simulations. Appl. Surf. Sci. 374, 235–242 (2016).

    Article  ADS  Google Scholar 

  12. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  Google Scholar 

  13. Mirza, I. et al. Ultrashort pulse laser ablation of dielectrics: thresholds, mechanisms, role of breakdown. Sci. Rep. 6, 39133 (2016).

    Article  ADS  Google Scholar 

  14. Haahr-Lillevang, L. et al. Short-pulse laser excitation of quartz. Experiments and modelling of transient optical properties and ablation. Appl. Phys. A 120, 1221–1227 (2015).

    Article  ADS  Google Scholar 

  15. Mao, S. S. et al. Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A 79, 1695–1709 (2004).

    Article  ADS  Google Scholar 

  16. Temnov, V. V., Sokolowski-Tinten, K., Zhou, P. & von der Linde, D. Femtosecond time-resolved interferometric microscopy. Appl. Phys. A 78, 483–489 (2004).

    Article  ADS  Google Scholar 

  17. Garcia-Lechuga, M. et al. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses. Phys. Rev. B 95, 214114 (2017).

    Article  ADS  Google Scholar 

  18. Wædegaard, K. J., Sandkamm, D. B., Mouskeftaras, A., Guizard, S. & Balling, P. Probing ultrashort-pulse laser excitation of sapphire. From the initial carrier creation to material ablation. Europhys. Lett. 105, 47001 (2014).

    Article  ADS  Google Scholar 

  19. Gulley, J. R. & Dennis, W. M. Ultrashort-pulse propagation through free-carrier plasmas. Phys. Rev. A 81, 33818 (2010).

    Article  ADS  Google Scholar 

  20. Temnov, V. V., Sokolowski-Tinten, K., Zhou, P., El-Khamhawy, A. & von der Linde, D. Multiphoton ionization in dielectrics: comparison of circular and linear polarization. Phys. Rev. Lett. 97, 237403 (2006).

    Article  ADS  Google Scholar 

  21. del Hoyo, J. et al. Rapid assessment of nonlinear optical propagation effects in dielectrics. Sci. Rep. 5, 7650 (2015).

    Article  Google Scholar 

  22. Lanier, T. E. & Gulley, J. R. Nonlinear space-time focusing and filamentation of annular femtosecond pulses in dielectrics. J. Opt. Soc. Am. B 33, 292–301 (2016).

    Article  ADS  Google Scholar 

  23. Huthmacher, K., Molberg, A. K., Rethfeld, B. & Gulley, J. R. A split-step method to include electron–electron collisions via Monte Carlo in multiple rate equation simulations. J. Comput. Phys. 322, 535–546 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. Quéré, F., Guizard, S. & Martin, P. Time-resolved study of laser-induced breakdown in dielectrics. Europhys. Lett. 56, 138–144 (2001).

    Article  ADS  Google Scholar 

  25. Christensen, M. N., Byskov-Nielsen, J., Christensen, B. H. & Balling, P. Single-shot ablation of sapphire by ultrashort laser pulses. Appl. Phys. A 101, 279–282 (2010).

    Article  ADS  Google Scholar 

  26. Rethfeld, B. Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92, 187401 (2004).

    Article  ADS  Google Scholar 

  27. Wædegaard, K., Sandkamm, D. B., Haahr-Lillevang, L., Bay, K. G. & Balling, P. Modeling short-pulse laser excitation of dielectric materials. Appl. Phys. A 117, 7–12 (2014).

    Article  ADS  Google Scholar 

  28. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    Article  ADS  Google Scholar 

  29. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 27403 (2013).

    Article  ADS  Google Scholar 

  30. Ebnonnasir, A., Narayanan, B., Kodambaka, S. & Ciobanu, C. V. Tunable MoS2 bandgap in MoS2–graphene heterostructures. Appl. Phys. Lett. 105, 31603 (2014).

    Article  Google Scholar 

  31. Götte, N. et al. Temporal Airy pulses for controlled high aspect ratio nanomachining of dielectrics. Optica 3, 389–395 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Otto-Braun-Funds, Deutsche Forschungsgemeinschaft (DFG) and the Danish Council for Independent Research | Natural Sciences. We highly acknowledge fruitful discussions with B. Rethfeld and her important input regarding our model.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived and build by T.W., L.H.L., C.S. and B.Z. T.W. and L.H.L. carried out the experiments. T.W. and L.H.L. processed the data. L.H.L. and T.W. performed the simulations. Data were interpreted and discussed by all authors.

Corresponding authors

Correspondence to Thomas Winkler, Peter Balling or Thomas Baumert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1556 kb)

Supplementary movie

Supplementary movie 1 (MOV 2362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, T., Haahr-Lillevang, L., Sarpe, C. et al. Laser amplification in excited dielectrics. Nature Phys 14, 74–79 (2018). https://doi.org/10.1038/nphys4265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing