Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherence time of over a second in a telecom-compatible quantum memory storage material

Abstract

Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm−1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: 1,538 nm optical transition of 167Er3+: Y2SiO5.
Figure 2: Absorption spectrum of 167Er3+: Y2SiO5 with 95% of the ensemble pumped into the |+7/2〉 hyperfine spin state (orange, vertical axis on left), obtained by AM spectroscopy.
Figure 3: The decay rate of 167Er3+ nuclear spin polarization as a function of temperature, for a field of 7 T.
Figure 4: The lifetime of spectral holes burnt into the ΔmI = +1 absorption band of 167Er3+: Y2SiO5 at 1.4 K, as a function of magnetic field along the D1 axis.
Figure 5: Raman echo measurement of 167Er coherence time.

References

  1. 1

    Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  Article  Google Scholar 

  4. 4

    Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    ADS  Article  Google Scholar 

  5. 5

    Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

    ADS  Article  Google Scholar 

  6. 6

    Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010).

    Article  Google Scholar 

  7. 7

    Dudin, Y. O. et al. Entanglement of light-shift compensated atomic spin waves with telecom light. Phys. Rev. Lett. 105, 260502 (2010).

    ADS  Article  Google Scholar 

  8. 8

    Albrecht, B., Farrera, P., Fernandez-Gonzalvo, X., Cristiani, M. & de Riedmatten, H. A waveguide frequency converter connecting rubidium based quantum memories to the telecom C-band. Nat. Commun. 5, 3376 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Maring, N. et al. Storage of up-converted telecom photons in a doped crystal. New J. Phys. 16, 113021 (2014).

    Article  Google Scholar 

  10. 10

    Seri, A. et al. Quantum correlations between single telecom photons and a multimode on-demand solid-state quantum memory. Phys. Rev. X 7, 021028 (2017).

    Google Scholar 

  11. 11

    Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

    ADS  Article  Google Scholar 

  12. 12

    Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

    ADS  Article  Google Scholar 

  13. 13

    Bussieres, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014).

    ADS  Article  Google Scholar 

  14. 14

    Zhang, W. et al. Storing a single photon as a spin wave entangled with a flying photon in the telecommunication bandwidth. Phys. Rev. A 93, 022316 (2016).

    ADS  Article  Google Scholar 

  15. 15

    Ferguson, K. R., Beavan, S. E., Longdell, J. J. & Sellars, M. J. Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory. Phys. Rev. Lett. 117, 020501 (2016).

    ADS  Article  Google Scholar 

  16. 16

    Jobez, P. et al. Coherent spin control at the quantum level in an ensemble-based optical memory. Phys. Rev. Lett. 114, 230502 (2015).

    ADS  Article  Google Scholar 

  17. 17

    Gündoǧan, M., Ledingham, P. M., Kutluer, K., Mazzera, M. & de Riedmatten, H. Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501 (2015).

    ADS  Article  Google Scholar 

  18. 18

    Laplane, C. et al. Multiplexed on-demand storage of polarization qubits in a crystal. New J. Phys. 18, 013006 (2015).

    Article  Google Scholar 

  19. 19

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Sabooni, M., Li, Q., Kröll, S. & Rippe, L. Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110, 133604 (2013).

    ADS  Article  Google Scholar 

  21. 21

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    ADS  Article  Google Scholar 

  22. 22

    Baldit, E. et al. Identification of Λ-like systems in Er3+ : Y2SiO5 and observation of electromagnetically induced transparency. Phys. Rev. B 81, 144303 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Hastings-Simon, S. R. et al. Zeeman-level lifetimes in Er3+ : Y2SiO5 . Phys. Rev. B 78, 085410 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Usmani, I., Afzelius, M., de Riedmatten, H. & Gisin, N. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun. 1, 1010 (2010).

    Article  Google Scholar 

  25. 25

    Holliday, K., Croci, M., Vauthey, E. & Wild, U. P. Spectral hole burning and holography in an Pr3+ : Y2SiO5 crystal. Phys. Rev. B 47, 14741–14752 (1993).

    ADS  Article  Google Scholar 

  26. 26

    Könz, F. et al. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+ : Y2SiO5 . Phys. Rev. B 68, 085109 (2003).

    ADS  Article  Google Scholar 

  27. 27

    Lauritzen, B. et al. Telecommunication-wavelength solid-state memory at the single photon level. Phys. Rev. Lett. 104, 080502 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Hétet, G., Longdell, J. J., Alexander, A. L., Lam, P. K. & Sellars, M. J. Electro-optic quantum memory for light using two-level atoms. Phys. Rev. Lett. 100, 023601 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Dajczgewand, J., Le Gouët, J.-L., Louchet-Chauvet, A. & Chanelière, T. Large efficiency at telecom wavelength for optical quantum memories. Opt. Lett. 39, 2711 (2014).

    ADS  Article  Google Scholar 

  30. 30

    Razavi, M., Piani, M. & Lütkenhaus, N. Quantum repeaters with imperfect memories: cost and scalability. Phys. Rev. A 80, 032301 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Böttger, T., Thiel, C. W., Cone, R. L. & Sun, Y. Effects of magnetic field orientation on optical decoherence in Er3+ : Y2SiO5 . Phys. Rev. B 79, 115104 (2009).

    ADS  Article  Google Scholar 

  32. 32

    Kurkin, I. & Chernov, K. EPR and spin-lattice relaxation of rare-earth activated centres in Y2SiO5 single crystals. Physica B+C 101, 233–238 (1980).

    ADS  Article  Google Scholar 

  33. 33

    Guillot-Noël, O. et al. Hyperfine interaction of Er3+ ions in Y2SiO5: an electron paramagnetic resonance spectroscopy study. Phys. Rev. B 74, 214409 (2006).

    ADS  Article  Google Scholar 

  34. 34

    Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Metal Ions Ch. 10, 2nd edn (Dover, 1970).

    Google Scholar 

  35. 35

    Böttger, T., Thiel, C. W., Sun, Y. & Cone, R. L. Optical decoherence and spectral diffusion at 1.5 μm in Er3+ : Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B 73, 075101 (2006).

    ADS  Article  Google Scholar 

  36. 36

    Guillot-Noël, O. et al. Direct observation of rare-earth-host interactions in Er3+ : Y2SiO5 . Phys. Rev. B 76, 180408 (2007).

    ADS  Article  Google Scholar 

  37. 37

    Wolfowicz, G. et al. Coherent storage of microwave excitations in rare-earth nuclear spins. Phys. Rev. Lett. 114, 170503 (2015).

    ADS  Article  Google Scholar 

  38. 38

    Zhou, Z. Q., Lin, W. B., Yang, M., Li, C. F. & Guo, G. C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).

    ADS  Article  Google Scholar 

  39. 39

    Saunders, D. J. et al. Cavity-enhanced room-temperature broadband Raman memory. Phys. Rev. Lett. 116, 090501 (2016).

    ADS  Article  Google Scholar 

  40. 40

    Poem, E. et al. Broadband noise-free optical quantum memory with neutral nitrogen-vacancy centers in diamond. Phys. Rev. B 91, 205108 (2015).

    ADS  Article  Google Scholar 

  41. 41

    de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

M.J.S. would like to thank C. Thiel for insightful discussions. This work was supported by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Grant No. CE110001027). M.J.S. was supported by an Australian Research Council Future Fellowship (Grant No. FT110100919).

Author information

Affiliations

Authors

Contributions

M.J.S. and M.P.H. conceived the initial project. M.J.S., M.P.H. and M.R. designed the experimental set-up. M.R. carried out the experiment. M.R. and R.L.A. analysed the results. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Miloš Rančić.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 523 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rančić, M., Hedges, M., Ahlefeldt, R. et al. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nature Phys 14, 50–54 (2018). https://doi.org/10.1038/nphys4254

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing